TY - JOUR
T1 - Evaluation the spoilage and biogenic amines formation potential of marine Gram-positive bacteria
AU - Al Bulushi, I. M.
AU - Poole, S.
AU - Deeth, H. C.
AU - Dykes, G. A.
N1 - Publisher Copyright:
© 2018 Universiti Putra Malaysia.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2018/10
Y1 - 2018/10
N2 - The ability of Gram-positive bacteria to form biogenic amines from different sources has been well documented; however, this ability and the spoilage potential of Gram-positive bacteria from marine sources have not been investigated. Therefore, this study aimed to evaluate the spoilage potential and the potential to form biogenic amines of 228 Gram-positive bacteria isolated from sub-tropical marine fish through their abilities to utilize organic and inorganic sulphur-containing sources, reduce trimethylamine oxide (TMAO) to trimethylamine (TMAO) and decarboxylate histidine, lysine and ornithine. Strains of Brevibacillus borstelensis (two), Streptococcus uberis (one), Vagococcus fluvialis (two) utilized sodium thiosulphate, cysteine and methionine. However, strains varied in sulphur source utilization. Exiguobacterium acetylicum (one), Exiguobacterium spp. (one), Carnobacterium spp. (one), Brev. borstelensis (two), Streptococcus uberis (two) and Vagococcus fluvialis (two) reduced TMAO. Histidine was not decarboxylated by any Gram-positive bacteria. Lysine and ornithine were decarboxylated mainly by strains of Staphylococcus warneri (eight), Staphylococcus epidermidis (seven) and Micrococcus luteus (two). This study found that Gram-positive bacteria of marine source were weak spoilers, however they had good potential to produce some biogenic amines and their potential was strain-dependent.
AB - The ability of Gram-positive bacteria to form biogenic amines from different sources has been well documented; however, this ability and the spoilage potential of Gram-positive bacteria from marine sources have not been investigated. Therefore, this study aimed to evaluate the spoilage potential and the potential to form biogenic amines of 228 Gram-positive bacteria isolated from sub-tropical marine fish through their abilities to utilize organic and inorganic sulphur-containing sources, reduce trimethylamine oxide (TMAO) to trimethylamine (TMAO) and decarboxylate histidine, lysine and ornithine. Strains of Brevibacillus borstelensis (two), Streptococcus uberis (one), Vagococcus fluvialis (two) utilized sodium thiosulphate, cysteine and methionine. However, strains varied in sulphur source utilization. Exiguobacterium acetylicum (one), Exiguobacterium spp. (one), Carnobacterium spp. (one), Brev. borstelensis (two), Streptococcus uberis (two) and Vagococcus fluvialis (two) reduced TMAO. Histidine was not decarboxylated by any Gram-positive bacteria. Lysine and ornithine were decarboxylated mainly by strains of Staphylococcus warneri (eight), Staphylococcus epidermidis (seven) and Micrococcus luteus (two). This study found that Gram-positive bacteria of marine source were weak spoilers, however they had good potential to produce some biogenic amines and their potential was strain-dependent.
KW - Biogenic amine
KW - Gram-positive bacteria
KW - Spoilage
UR - http://www.scopus.com/inward/record.url?scp=85069916384&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069916384&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85069916384
SN - 1985-4668
VL - 25
SP - 2143
EP - 2148
JO - International Food Research Journal
JF - International Food Research Journal
IS - 5
ER -