TY - JOUR
T1 - Visualization of gene expression of short and long forms of prolactin receptor in rat digestive tissues
AU - Ouhtit, A.
AU - Kelly, P. A.
AU - Morel, G.
PY - 1994
Y1 - 1994
N2 - Several effects of prolactin have been characterized in various tissues of the gastrointestinal tract. In the present study, the expression of short and long forms of prolactin receptor was explored and quantified in the digestive tract and correlated to the prolactin specific functions. Sections of all digestive tissues were analyzed by in situ hybridization, using 35S- labeled oligoprobes unique to each form of receptor. Macroautoradiogram signals were quantified and expressed in arbitrary units. In rat liver, prolactin receptor mRNAs are expressed to a much greater degree in females than in males. The short-form transcript is significantly expressed to a greater degree in liver, whereas the long form predominates in the pancreas and esophagus. In the remainder of the gastrointestinal tract, there is an equivalent distribution of short- and long-form transcripts. Relatively high signal intensities are seen in the stomach, duodenum, jejunum, ileum, and colon, whereas the rectum is essentially negative. The identification of prolactin receptor gene expression to limited regions should help establish specific functions associated with this hormone in the digestive tissues.
AB - Several effects of prolactin have been characterized in various tissues of the gastrointestinal tract. In the present study, the expression of short and long forms of prolactin receptor was explored and quantified in the digestive tract and correlated to the prolactin specific functions. Sections of all digestive tissues were analyzed by in situ hybridization, using 35S- labeled oligoprobes unique to each form of receptor. Macroautoradiogram signals were quantified and expressed in arbitrary units. In rat liver, prolactin receptor mRNAs are expressed to a much greater degree in females than in males. The short-form transcript is significantly expressed to a greater degree in liver, whereas the long form predominates in the pancreas and esophagus. In the remainder of the gastrointestinal tract, there is an equivalent distribution of short- and long-form transcripts. Relatively high signal intensities are seen in the stomach, duodenum, jejunum, ileum, and colon, whereas the rectum is essentially negative. The identification of prolactin receptor gene expression to limited regions should help establish specific functions associated with this hormone in the digestive tissues.
KW - in situ hybridization
KW - messenger ribonucleic acid
KW - quantification
UR - http://www.scopus.com/inward/record.url?scp=0028306081&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028306081&partnerID=8YFLogxK
M3 - Article
C2 - 8203527
SN - 0193-1857
VL - 266
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 5 29-5
ER -