Abstract
In this study, we have discussed thermophoresis particle deposition effects under the action of both pressure and buoyant forces flow of magneto-Walter's B nanofluid induced by a stretched surface. The Buongiorno nanofluid model is employed to analyze the dynamic impact of thermophoretic dispersion and Brownian motion. The effects of chemical reaction, Joule heating and non-linear radiation relations are also incorporated. The analysis has been performed in view of solutal and heat convective boundary constraints. The analytical technique namely homotopy analysis scheme followed to solve the resulting non-linear governing equations. The behavior of velocity, temperature and concentration profiles are observed graphically. The physical consequences for all physical parameters are justified. It is noted that heat thermal Biot number, thermophoretic constant and viscoelastic parameter increases the nanofluid temperature and concentration. A decaying concentration profile is noted for Schmidt number.
Original language | English |
---|---|
Pages (from-to) | 1851-1860 |
Number of pages | 10 |
Journal | Alexandria Engineering Journal |
Volume | 60 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2021 |
Keywords
- Brownian motion and thermophoresis diffusion
- Chemical reaction
- Convective boundary conditions
- Joule heating
- Nonlinear thermal radiation
- Walter's nanofluid
ASJC Scopus subject areas
- Engineering(all)