Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications

Hafiz Muhammad Uzair Ayub*, Muhammad Nizami, Muhammad Abdul Qyyum*, Noman Iqbal, Ala'a H. Al-Muhtaseb, Mudassir Hasan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg−1; for indirect bio photolysis it costs around $7.54 kg−1 and for fermentation, it costs around $7.61 kg−1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.

Original languageEnglish
Article number117815
JournalEnvironmental Research
Volume244
DOIs
Publication statusPublished - Mar 1 2024

Keywords

  • Biohydrogen production
  • Cultivation process
  • Economic
  • Environment
  • Microalgae

ASJC Scopus subject areas

  • Biochemistry
  • General Environmental Science

Cite this