State diagram of temperature vs date solids obtained from the mature fruit

Stefan Kasapis, M. Shafiur Rahman, Nejib Guizani, Mansoura Al-Aamri

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)


Mature dates were dried achieving an increase in the level of solids from 70.8% to 92.4% (wet basis). Small deformation dynamic oscillation was employed to identify changes in the viscoelastic properties of dates as a function of solids. Samples were cooled or heated at a constant scan rate of 1 °C/min. At high temperatures, e.g., 70 °C, the storage and loss modulus (G' and G'', respectively) remained relatively independent of the time or frequency of observation, thus delineating the plateau zone. Cooling resulted in rapid development of both moduli with G'' overtaking G'. This is known as the glass transition region and was used to define the rheological T(g). Eventually, the glassy state is reached where the storage modulus becomes dominant once more and approaches values of 109.5 Pa. The values of T(g) were used to determine the metastable glass transition curve of mature dates. At lower levels of solids, i.e., between 11.7% and 64%, freezing experiments were employed to identify the equilibrium melting curve of ice. The state diagram yielded a maximally freeze-concentrated solute at 70% solids with the characteristic temperature of glass formation being -50 °C. Data on equilibrium and kinetic events were modeled using the Chen and Gordon-Taylor equations yielding the rheological T(g) for date solids at their effective molecular weight.

Original languageEnglish
Pages (from-to)3779-3784
Number of pages6
JournalJournal of Agricultural and Food Chemistry
Issue number9
Publication statusPublished - 2000


  • Drying
  • Freezing
  • Mature dates
  • Rheological glass transition
  • State diagram

ASJC Scopus subject areas

  • Chemistry(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'State diagram of temperature vs date solids obtained from the mature fruit'. Together they form a unique fingerprint.

Cite this