Precise Point Positioning Technique with IGS Real-Time Service (RTS) for Maritime Applications

Mohammed El-Diasty, Mohamed Elsobeiey

Research output: Contribution to journalArticlepeer-review


The maritime navigation accuracy requirements for radionavigation systems such as GPS are specified by the International Maritime Organization (IMO). Maritime navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with an accuracy requirement that ranges from 10 m to 0.1 m. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of the new IGS-Real-Time-Service (RTS), it is necessary to assess the possibility of a wider role of the PPP-based positioning technique in maritime applications. This paper investigates the performance of an autonomous real-time PPP-positioning solution by using the IGS-RTS service for maritime applications that require an accurate positioning system. To examine the performance of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is investigated. It is shown that the real-time IGS-RTS PPP-based GPS positioning technique fulfills IMO requirements for maritime applications with an accuracy requirement ranges from 10 m for Ocean/Coastal/Port approach/Inland waterways navigation to 1.0 m for in port navigation but cannot fulfill the automatic docking application with an accuracy requirement of 0.10 m. To further investigate the real-time PPP-based GPS positioning technique, a comparison is made between the real-time IGS-RTS PPP-based positioning technique and the real-time PPP-based positioning by using the predicted part of the IGS Ultra-Rapid products and the real-time GPS positioning technique with the Wide Area Differential GPS service (WADGPS). It is shown that the IGS-RTS PPP-based positioning technique is superior to the IGS-Ultra-Rapid PPP-based and WADGPS-based positioning techniques.
Original languageEnglish
Pages (from-to)71-80
Number of pages10
Issue number04
Publication statusPublished - 2015

Cite this