Plant-Disease-Suppressive and Growth-Promoting Activities of Endophytic and Rhizobacterial Isolates Associated with Citrullus colocynthis

Badriya Khalfan Al-Shuaibi, Elham Ahmed Kazerooni, Shah Hussain, Rethinasamy Velazhahan, Abdullah Mohammed Al-Sadi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study was conducted to investigate the antagonistic potential of endophytic and rhizospheric bacterial isolates obtained from Citrullus colocynthis in suppressing Fusarium solani and Pythium aphanidermatum and promoting the growth of cucumber. Molecular identification of bacterial strains associated with C. colocynthis confirmed that these strains belong to the Achromobacter, Pantoea, Pseudomonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavidus, and Exiguobacterium genera. A dual culture assay showed that nine of the bacterial strains exhibited antifungal activity, four of which were effective against both pathogens. Strains B27 (Pantoea dispersa) and B28 (Exiguobacterium indicum) caused the highest percentage of inhibition towards F. solani (48.5% and 48.1%, respectively). P. aphanidermatum growth was impeded by the B21 (Bacillus cereus, 44.7%) and B28 (Exiguobacterium indicum, 51.1%) strains. Scanning electron microscopy showed that the strains caused abnormality in phytopathogens’ mycelia. All of the selected bacterial strains showed good IAA production (>500 ppm). A paper towel experiment demonstrated that these strains improved the seed germination, root/shoot growth, and vigor index of cucumber seedlings. Our findings suggest that the bacterial strains from C. colocynthis are suppressive to F. solani and P. aphanidermatum and can promote cucumber growth. This appears to be the first study to report the efficacy of these bacterial strains from C. colocynthis against F. solani and P. aphanidermatum.

Original languageEnglish
Article number1275
JournalPathogens
Volume12
Issue number11
DOIs
Publication statusPublished - Nov 2023

Keywords

  • Fusarium solani
  • Pythium aphanidermatum
  • antagonistic bacteria
  • biological control
  • damping-off
  • plant growth promotion

ASJC Scopus subject areas

  • Immunology and Allergy
  • Molecular Biology
  • General Immunology and Microbiology
  • Microbiology (medical)
  • Infectious Diseases

Cite this