Numerical methods for nonlinear fourth-order boundary value problems with applications

Mohamed Ali Hajji, Kamel Al-Khaled*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


In this paper, we present efficient numerical algorithms for the approximate solution of nonlinear fourth-order boundary value problems. The first algorithm deals with the sinc-Galerkin method (SGM). The sinc basis functions prove to handle well singularities in the problem. The resulting SGM discrete system is carefully developed. The second method, the Adomian decomposition method (ADM), gives the solution in the form of a series solution. A modified form of the ADM based on the use of the Laplace transform is also presented. We refer to this method as the Laplace Adomian decomposition technique (LADT). The proposed LADT can make the Adomian series solution convergent in the Laplace domain, when the ADM series solution diverges in the space domain. A number of examples are considered to investigate the reliability and efficiency of each method. Numerical results show that the sinc-Galerkin method is more reliable and more accurate.

Original languageEnglish
Pages (from-to)83-104
Number of pages22
JournalInternational Journal of Computer Mathematics
Issue number1
Publication statusPublished - Jan 2008
Externally publishedYes


  • Adomian's decomposition method
  • Approximate solutions
  • Fourth order BVPs
  • Laplace transform
  • Sinc-Galerkin

ASJC Scopus subject areas

  • Computer Science Applications
  • Computational Theory and Mathematics
  • Applied Mathematics


Dive into the research topics of 'Numerical methods for nonlinear fourth-order boundary value problems with applications'. Together they form a unique fingerprint.

Cite this