Mosquito larvae change their feeding behavior in response to kairomones from some predators

Derek Roberts*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


ABSTRACT The efficacy of using predators for the biological control of mosquito disease vectors will be reduced if mosquito larvae respond to predator presence. The larvae of two mosquito species were investigated to study whether they responded to predator kairomones by increasing surface filter-feeding, which is a less active and thus less risky feeding strategy than bottom feeding. Culex quinquefasciatus Say is normally found in highly polluted water, where it will have little contact with predators. Except for some third instars, its larvae showed no response to four different types of predators. Culiseta longiareolata Macquart, living in rain-filled rock pools, is frequently attacked by a range of predators. All instars tested (second, third, and fourth instars) strongly responded to chemicals from dragonfly nymphs (Crocothemis erythraea Brullé), damselfly nymphs (Ischnura evansi Morton), and the fish Aphanius dispar Ruppel. However, they did not respond to final-instar water scorpions (Nepa cinerea L.), which would not feed on the mosquito larvae. Second- and third-instar Cs. longiareolata produced the same response to chopped up mosquito larvae as they did to dragonfly nymphs, but fourth instars produced a significantly stronger response to dragonfly nymphs-both those unfed and those fed in situ. Thus, Cs. longiareolata not only identified different predators and responded accordingly, but also responded to conspecific alarm pheromones. Cx quinquefasciatus showed little response to predators or to alarm pheromones from damaged conspecific larvae.

Original languageEnglish
Pages (from-to)368-374
Number of pages7
JournalJournal of Medical Entomology
Issue number2
Publication statusPublished - Mar 2014


  • Culex quinquefasciatus
  • Culiseta longiareolata
  • Filter feeding
  • Mosquito larvae
  • Predator avoidance

ASJC Scopus subject areas

  • Parasitology
  • veterinary(all)
  • Insect Science
  • Infectious Diseases


Dive into the research topics of 'Mosquito larvae change their feeding behavior in response to kairomones from some predators'. Together they form a unique fingerprint.

Cite this