H2-enriched gaseous fuel production via co-gasification of an algae-plastic waste mixture using Aspen PLUS

Pali Rosha, Sandeep Kumar*, Shruti Vikram, Hussameldin Ibrahim*, Ala'a H. Al-Muhtaseb

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Thermo-chemical conversion of biomass is a promising technological alternative for producing renewable fuel and reducing waste disposal. This simulation study includes the first attempt to perform co-gasification of algae-plastic waste for H2-enriched gaseous fuel production. An Aspen Plus-based simulation model was developed to evaluate the influence of gasifier temperature and equivalence ratio on the syngas composition, heating value, and carbon conversion efficiency. Simulation results indicated that the rise in gasifier temperature favoured the H2 and CO formation, and further, plastic loading enhanced H2 production to a greater extent. It was observed that the product (H2 and CO) yield decreased significantly with the rise of the equivalence ratio. At the same time, CO2 formation increased due to more carbon conversion after enhancing O2 content in the gasifier. It was also noticed that the synergy of biomass and plastic waste significantly enhanced H2 content and improved heating value, leading to a produced energy-efficient gaseous product. It is inferred that H2-enriched feedstock acts as an H2 donor to the H2 deficient biomass. Based on the findings, consistency in the simulation results was observed compared with the previous literature. Hence, a mixture of biomass and plastic waste favours obtaining an energy-efficient renewable fuel that could be utilized for different applications.

Original languageEnglish
Pages (from-to)26294-26302
Number of pages9
JournalInternational Journal of Hydrogen Energy
Volume47
Issue number62
DOIs
Publication statusPublished - Jul 22 2022

Keywords

  • Algae
  • Aspen plus
  • Co-gasification
  • Hydrogen
  • Plastic waste
  • Simulation

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'H2-enriched gaseous fuel production via co-gasification of an algae-plastic waste mixture using Aspen PLUS'. Together they form a unique fingerprint.

Cite this