Emergent magnetism at transition-metal-nanocarbon interfaces

Fatma Al Ma'Mari, Matthew Rogers, Shoug Alghamdi, Timothy Moorsom, Stephen Lee, Thomas Prokscha, Hubertus Luetkens, Manuel Valvidares, Gilberto Teobaldif, MacHiel Flokstra, Rhea Stewart, Pierluigi Gargiani, Mannan Ali, Gavin Burnell, B. J. Hickey, Oscar Cespedes*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2.π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π∗-molecular levels, whereas the dichroism in the∗-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz-π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.

Original languageEnglish
Pages (from-to)5583-5588
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume114
Issue number22
DOIs
Publication statusPublished - May 30 2017

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Emergent magnetism at transition-metal-nanocarbon interfaces'. Together they form a unique fingerprint.

Cite this