Dynamic Modeling and Investigation of a Tunable Vortex Bladeless Wind Turbine

Issam Bahadur*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


This paper investigates the dynamics of an electromagnetic vortex bladeless wind turbine (VBWT) with a tunable mechanism. The tunable mechanism comprises a progressive-rate spring that is attached to an oscillating magnet inside an electromagnetic coil. The spring stiffness is progressively adjusted as the wind speed changes to tune the turbine fundamental frequency to match the shedding frequency of the vortex-induced vibration (VIV) due to the wind flow crossing over the oscillating mast. Coupled nonlinear equations of motion of the tunable turbine are developed using the lumped-mass representation and Lagrange formulation. Numerical results show that the tunable turbine performs effectively beyond a threshold wind speed. An analytical expression of the threshold speed is derived based on the mechanical fundamental frequency of the turbine. The analytical results are in reasonable agreement with the numerical evaluations. At a given wind speed past the threshold, the tunable turbine has an optimum spring stiffness at which the output power is maximum. Numerical studies also show that the output power of the 2 m long tunable turbine is tens of times larger in comparison to a conventional bladeless turbine. For example, at a wind speed of 4.22 m/s, the output rms power of the tunable turbine is around 1105 mW versus 17 mW of the conventional VBWT. The power can be further maximized at an optimum external load. This research work demonstrated the feasibility and merits of the proposed tunable mechanism to enhance the overall performance of the bladeless wind turbine.

Original languageEnglish
Article number6773
Issue number18
Publication statusPublished - Sept 2022


  • bladeless wind turbine
  • electromagnetic
  • energy harvester
  • spring–pendulum system
  • tunable
  • vortex-induced vibration

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Cite this