Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata

Sergey Dobretsov, Hans Uwe Dahms, Tilmann Harder, Pei Yuan Qian*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


The abundance and diversity of microorganisms on the surface of the tropical green macroalga Caulerpa racemosa var. turbinata and the effect of algal surface and waterborne compounds on fouling organisms were investigated both in laboratory and field experiments. As shown via electron microscopic enumeration, the abundance of epibiotic bacteria and diatoms on algal frond surfaces was not significantly different from the reference biofilms harvested from stones in the C. racemosa habitat. The analysis of Terminal Restriction Fragment Length Polymorphism of DNA from algal surface-associated bacterial communities revealed that despite a similar abundance of these bacteria, the community profile on algal frond surfaces differed significantly from that of inanimate, undefended substrates. These results suggest that the alga regulate the occurrence of certain bacterial ribotypes. This result was in accordance with the fact that different bacterial communities formed on the artificial substrata (i.e. Petri dishes) placed in the C. racemosa habitat and alga-free control sites. Neither C. racemosa conditioned seawater (CCW) nor hexane surface extracts affected the growth of bacterial isolates from biofilms. However, only CCW exhibited a toxic effect on the larvae of the fouling polychaete Hydroides elegans, and evoked abnormal larval development in a concentration-dependent fashion. At sublethal concentrations, the <1 kD fraction of CCW inhibited the larval settlement of H. elegans and the bryozoan Bugula neritina. Caulerpenyne, the prominent bioactive metabolite in the genus Caulerpa, was not detected in CCW by chromatographic procedures. Our data suggest that waterborne compounds other than caulerpenyne are involved in the chemical defense of the alga C. racemosa.

Original languageEnglish
Pages (from-to)165-175
Number of pages11
JournalMarine Ecology Progress Series
Publication statusPublished - Aug 3 2006
Externally publishedYes


  • Algae
  • Antifouling
  • Caulerpa racemosa
  • Chemical defense
  • Epibiosis
  • Larval settlement
  • Microbial communities

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science
  • Ecology


Dive into the research topics of 'Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata'. Together they form a unique fingerprint.

Cite this