A selective excitation mode design for a wider high-to-low frequencies tunable capacitive MEMS resonator

Hassen M. Ouakad*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


This research paper offers a simple and original approach to extend the resonant frequency tuning range from high-to-low frequencies in electrostatically actuated microelectromechanical systems (MEMS) based resonators. Typically, it is possible to achieve low frequencies in MEMS through increasing the effective mass or decreasing the mechanical stiffness in micro structures. However, this work intends, assuming a double-sided electrodes design, to control the excited mode of the micro-system in order achieve low frequencies through DC bias voltage variations and possibly eliminating the displacement dependency in capacitive micro-bridges-based structures. The design consists of a flexible microbeam where its equations of motion are derived within the framework of the nonlinear Euler–Bernoulli beam theory. The equations are then solved using the reduced-order modeling based on the Galerkin modal decomposition and while considering the couple-stress theory. Simulations show an improved performance of the micro- structure as compared to previous investigations. In addition, a wider frequency tuning range has been achieved through a proper DC bias voltage arrangement.

Original languageEnglish
Pages (from-to)4329-4336
Number of pages8
JournalMicrosystem Technologies
Issue number12
Publication statusPublished - Dec 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Hardware and Architecture
  • Electrical and Electronic Engineering


Dive into the research topics of 'A selective excitation mode design for a wider high-to-low frequencies tunable capacitive MEMS resonator'. Together they form a unique fingerprint.

Cite this