Strong convergence rates for the approximation of a stochastic time-fractional Allen–Cahn equation

Mariam Al-Maskari, Samir Karaa*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء


The paper is concerned with the strong approximation of a stochastic time-fractional Allen-Cahn equation driven by an additive fractionally integrated Gaussian noise. The model involves two nonlocal terms in time; namely, a Caputo fractional derivative of order α∈(0,1), and a Riemann–Liouville fractional integral operator of order γ∈[0,1] applied to a Gaussian noise. We approximate the model by a standard piecewise linear finite element method (FEM) in space and the classical Grünwald–Letnikov method in time (for both time-fractional operators), and the noise by the L2-projection. Spatially semidiscrete and fully discrete schemes are analyzed and strong convergence rates are obtained by exploiting the temporal Hölder continuity property of the solution. Numerical experiments are presented to illustrate the theoretical results.

اللغة الأصليةEnglish
رقم المقال107099
دوريةCommunications in Nonlinear Science and Numerical Simulation
مستوى الصوت119
المعرِّفات الرقمية للأشياء
حالة النشرPublished - مايو 2023

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2600.2611???
  • ???subjectarea.asjc.2600.2604???

قم بذكر هذا