ملخص
The increase in temperature in compost piles/landfill sites due to micro-organisms undergoing exothermic reactions is modelled. A simplified model is considered in which only biological self-heating is present. The heat release rate due to biological activity is modelled by a function which is a monotonic increasing function of temperature over the range 0 ≤ T ≤ a, whilst for T ≥ a it is a monotone decreasing function of temperature. This functional dependence represents the fact that micro-organisms die or become dormant at high temperatures. The bifurcation behaviour is investigated for 1-d slab and 2-d rectangular slab geometries. In both cases there are two generic steady-state diagrams including one in which the temperature-response curve is the standard S-shaped curve familiar from combustion problems. Thus biological self-heating can cause elevated temperature raises due to jumps in the steady temperature. This problem is used to test a recently developed semi-analytical technique. For the 2-d problem a four-term expansion is found to give highly accurate results-the error of the semi-analytical solution is much smaller than the error due to uncertainty in parameter values. We conclude that the semi-analytical technique is a very promising method for the investigation of bifurcations in spatially distributed systems.
اللغة الأصلية | English |
---|---|
الصفحات (من إلى) | 4612-4619 |
عدد الصفحات | 8 |
دورية | Chemical Engineering Science |
مستوى الصوت | 62 |
رقم الإصدار | 17 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - سبتمبر 2007 |
ASJC Scopus subject areas
- ???subjectarea.asjc.1600???
- ???subjectarea.asjc.1500???
- ???subjectarea.asjc.2200.2209???