Optimization and analysis of advective travel times beneath hydraulic structures

Anvar R. Kacimov*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

9 اقتباسات (Scopus)


Steady, 2D Darcian seepage in a homogeneous isotropic porous medium under an impervious structure is studied by the methods of complex analysis. The geometry of the structure is studied focusing on the travel time of a marked (neutral tracer) particle from the upper pool to the tailwater. In the Verigin problem, the angle of inclination of a sheetpile resulting in minimal time along the bounding streamline is π2. If the maximum of the minimum of the travel time is searched between all streamlines originated in the upper pool, then the optimal angles are found to be 0.404π and 0.596π. The minimization of the total volume of fluid that arrives from the upper pool to the tailwater during a prescribed time span is also considered. For arbitrary geometry, structure optimization with respect to travel time is carried out explicitly for the bounding streamline with a constraint on the wetted perimeter of a depressed structure. The minimal-time shape is found to be the Voshinin semicircular structure, which is mathematically generated by a line vortex.

اللغة الأصليةEnglish
الصفحات (من إلى)1311-1317
عدد الصفحات7
دوريةJournal of Hydraulic Engineering
مستوى الصوت134
رقم الإصدار9
المعرِّفات الرقمية للأشياء
حالة النشرPublished - سبتمبر 2008

ASJC Scopus subject areas

  • ???subjectarea.asjc.2200.2205???
  • ???subjectarea.asjc.2300.2312???
  • ???subjectarea.asjc.2200.2210???


أدرس بدقة موضوعات البحث “Optimization and analysis of advective travel times beneath hydraulic structures'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا