Optimal shape of a variable condenser

Anvar Kacimov*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

21 اقتباسات (Scopus)


The shape of a condenser of maximal cross-sectional area at a given capacity is derived in an analytical explicit form. Optimization is performed in the class of practically arbitrary curves by solution of the Dirichlet boundary-value problem for a complex coordinate and expansions of the Cauchy integral kernels in Chebyshev polynomials. The criterion (area) becomes a quadratic form of the Fourier coefficients and both the necessary and sufficient extremum conditions are rigorously satisfied such that a global and unique extremum is achieved. The resulting curve coincides with the Polubarinova-Kochina contour of a concrete dam of constant hydraulic gradient, which in its own term coincides with the Taylor-Saffman bubble. In the limit of high capacitance, the Polubarinova-Kochina contour tends to the Saffman-Taylor finger, which in its own turn coincides with the Morse-Feshbach condenser contour of constant field intensity. Thus the contour found is of a minimal breakdown danger in the dielectric between charged surfaces (non-isoperimetric optimum) and of maximal confined area (isoperimetric extremum).

اللغة الأصليةEnglish
الصفحات (من إلى)485-494
عدد الصفحات10
دوريةProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
مستوى الصوت457
رقم الإصدار2006
المعرِّفات الرقمية للأشياء
حالة النشرPublished - فبراير 8 2001

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600???
  • ???subjectarea.asjc.2200???
  • ???subjectarea.asjc.3100???


أدرس بدقة موضوعات البحث “Optimal shape of a variable condenser'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا