Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments

Samir Karaa, Kassem Mustapha*, Amiya K. Pani

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

24 اقتباسات (Scopus)


In this article, the piecewise-linear finite element method (FEM) is applied to approximate the solution of time-fractional diffusion equations on bounded convex domains. Standard energy arguments do not provide satisfactory results for such a problem due to the low regularity of its exact solution. Using a delicate energy analysis, a priori optimal error bounds in (Formula presented.)-, (Formula presented.)-norms, and a quasi-optimal bound in (Formula presented.)-norm are derived for the semidiscrete FEM for cases with smooth and nonsmooth initial data. The main tool of our analysis is based on a repeated use of an integral operator and use of a (Formula presented.) type of weights to take care of the singular behavior of the continuous solution at (Formula presented.). The generalized Leibniz formula for fractional derivatives is found to play a key role in our analysis. Numerical experiments are presented to illustrate some of the theoretical results.

اللغة الأصليةEnglish
الصفحات (من إلى)1-17
عدد الصفحات17
دوريةJournal of Scientific Computing
المعرِّفات الرقمية للأشياء
حالة النشرAccepted/In press - مايو 19 2017

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.1700.1712???
  • ???subjectarea.asjc.2200???
  • ???subjectarea.asjc.1700.1703???


أدرس بدقة موضوعات البحث “Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا