Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data

Mariam Al-Maskari, Samir Karaa

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

27 اقتباسات (Scopus)


We consider the numerical approximation of a semilinear fractional order evolution equation involving a Caputo derivative in time of order α ϵ (0, 1). Assuming a Lipschitz continuous nonlinear source term and an initial data u0 ϵHν;(Ω), ν ϵ [0, 2], we discuss existence and stability and provide regularity estimates for the solution of the problem. For a spatial discretization via piecewise linear finite elements, we establish optimal L2(Ω)-error estimates for cases with smooth and nonsmooth initial data, extending thereby known results derived for the classical semilinear parabolic problem. We further investigate fully implicit and linearized time-stepping schemes based on a convolution quadrature in time generated by the backward Euler method. Our main result provides pointwise-in-time optimal L2(Ω)-error estimates for both numerical schemes. Numerical examples in one- and two-dimensional domains are presented to illustrate the theoretical results.

اللغة الأصليةEnglish
الصفحات (من إلى)1524-1544
عدد الصفحات21
دوريةSIAM Journal on Numerical Analysis
مستوى الصوت57
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2019

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2600.2605???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا