Neumann-boundary stabilization of the wave equation with damping control and applications

Boumediène Chentouf*, Aissa Guesmia

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمقالمراجعة النظراء

4 اقتباسات (Scopus)


This article is devoted to the boundary stabilization of a non-homogeneous ndimensional wave equation subject to static or dynamic Neumann boundary conditions. Using a linear feedback law involving only a damping term, we provide a simple method and obtain an asymptotic convergence result for the solutions of the considered systems. The method consists in proposing a new energy norm. Then, a similar result is derived for the case of dynamic Neumann boundary conditions with nonlinear damping feedback laws. Finally, the method presented in this work is also applied to several distributed parameter systems such as the Petrovsky system, coupled wave-wave equations and elasticity systems.

اللغة الأصليةEnglish
الصفحات (من إلى)541-566
عدد الصفحات26
دوريةCommunications in Applied Analysis
مستوى الصوت14
رقم الإصدار3-4
حالة النشرPublished - يوليو 2010

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2603???
  • ???subjectarea.asjc.2600.2612???
  • ???subjectarea.asjc.2600.2611???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “Neumann-boundary stabilization of the wave equation with damping control and applications'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا