Micromechanically based stochastic finite elements: Length scales and anisotropy

K. Alzebdeh*, M. Ostoja-Starzewski

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

16 اقتباسات (Scopus)


The present stochastic finite element (SFE) study amplifies a recently developed micromechanically based approach in which two estimates (upper and lower) of the finite element stiffness matrix and of the global response need first to be calculated. These two estimates correspond, respectively, to the principles of stationary potential and complementary energy on which the SFE is based. Both estimates of the stiffness matrix are anisotropic and tend to converge towards one another only in the infinite scale limit; this points to the fact that an approximating meso-scale continuum random field is neither unique nor isotropic. The SFE methodology based on this approach is implemented in a Monte Carlo sense for a conductivity (equivalently, out-of-plane elasticity) problem of a matrix-inclusion composite under mixed boundary conditions. Two versions are developed: in one an exact calculation of all the elements' stiffness matrices from the microstructure over the entire finite element mesh is carried out, while in the second one a second-order statistical characterization of the mesoscale continuum random field is used to generate these matrices.

اللغة الأصليةEnglish
الصفحات (من إلى)205-214
عدد الصفحات10
دوريةProbabilistic Engineering Mechanics
مستوى الصوت11
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرPublished - أكتوبر 1996
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.2200.2205???
  • ???subjectarea.asjc.2100.2104???
  • ???subjectarea.asjc.3100.3104???
  • ???subjectarea.asjc.2200.2202???
  • ???subjectarea.asjc.2200.2212???
  • ???subjectarea.asjc.2200.2210???


أدرس بدقة موضوعات البحث “Micromechanically based stochastic finite elements: Length scales and anisotropy'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا