ملخص
Meromorphic functions with a given growth of a spherical derivative on the complex plane are described in terms of the relative location of a-points of functions. The result obtained allows one to construct an example of a meromorphic function in ℂ with a slow growth of Nevanlinna characteristics and arbitrary growth of the spherical derivative. In addition, based on the universality property of the Riemann zeta-function, we estimate the growth of the spherical derivative of ζ(z).
اللغة الأصلية | English |
---|---|
الصفحات (من إلى) | 420-427 |
عدد الصفحات | 8 |
دورية | Journal of Mathematical Sciences |
مستوى الصوت | 252 |
رقم الإصدار | 3 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - يناير 2021 |
ASJC Scopus subject areas
- ???subjectarea.asjc.2600.2613???
- ???subjectarea.asjc.2600???
- ???subjectarea.asjc.2600.2604???