Improved local projection for the generalized stokes problem

Kamel Nafa*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

2 اقتباسات (Scopus)


We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties. An important feature of the methods is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system of equations. Although the stability of the method has been established, for the homogeneous Stokes equations, the proof given here is based on the existence of a special interpolant with additional orthogonal property with respect to the projection space. This makes it much simpler and more attractive. The resulting stabilized method is shown to lead to optimal rates of convergence for both velocity and pressure approximations.

اللغة الأصليةEnglish
الصفحات (من إلى)862-873
عدد الصفحات12
دوريةAdvances in Applied Mathematics and Mechanics
مستوى الصوت1
رقم الإصدار6
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2009

ASJC Scopus subject areas

  • ???subjectarea.asjc.2200.2210???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “Improved local projection for the generalized stokes problem'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا