Gmdh algorithm as a tool for bivalve growth analysis and prediction

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

3 اقتباسات (Scopus)


The question of whether growth in bivalves is predictable in terms of environmental conditions is addressed directly by trying to infer juvenile scallop growth from environmental data within and between two locations in the Baie des Chaleurs, Québec. Using models based on either self-organizing models - the group method of data handling (GMDH.) algorithm - or on multilinear regressions, scallop growth was found to be predictable. GMDH models lead consistently to better predictions than multilinear regressions and could thus be a useful alternative tool in managing scallop fisheries and aquaculture. Temperature and food availability were the most prominent variables included in the GMDH models, emphasizing their importance as physical determinants of scallop growth.

اللغة الأصليةEnglish
الصفحات (من إلى)439-445
عدد الصفحات7
دوريةICES Journal of Marine Science
مستوى الصوت51
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرPublished - أغسطس 1994

ASJC Scopus subject areas

  • ???subjectarea.asjc.1900.1910???
  • ???subjectarea.asjc.1100.1105???
  • ???subjectarea.asjc.1100.1104???
  • ???subjectarea.asjc.2300.2303???


أدرس بدقة موضوعات البحث “Gmdh algorithm as a tool for bivalve growth analysis and prediction'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا