ملخص
We derive optimal L2-error estimates for semilinear time-fractional subdiffusion problems involving Caputo derivatives in time of order α∈ (0 , 1) , for cases with smooth and nonsmooth initial data. A general framework is introduced allowing a unified error analysis of Galerkin type space approximation methods. The analysis is based on a semigroup type approach and exploits the properties of the inverse of the associated elliptic operator. Completely discrete schemes are analyzed in the same framework using a backward Euler convolution quadrature method in time. Numerical examples including conforming, nonconforming and mixed finite element methods are presented to illustrate the theoretical results.
اللغة الأصلية | English |
---|---|
رقم المقال | 46 |
دورية | Journal of Scientific Computing |
مستوى الصوت | 83 |
رقم الإصدار | 3 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | Published - يونيو 1 2020 |
منشور خارجيًا | نعم |
ASJC Scopus subject areas
- ???subjectarea.asjc.1700.1712???
- ???subjectarea.asjc.2600.2614???
- ???subjectarea.asjc.2600.2612???
- ???subjectarea.asjc.2200???
- ???subjectarea.asjc.1700.1703???
- ???subjectarea.asjc.2600.2605???
- ???subjectarea.asjc.2600.2604???