Fast convergence methods for hyperbolic systems of balance laws with riemann conditions

Kamel Al-Khaled*, Nid'a M. Rababah

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

1 اقتباس (Scopus)


In this paper, we develop an accurate technique via the use of the Adomian decomposition method (ADM) to solve analytically a 2 x 2 systems of partial differential equation that represent balance laws of hyperbolic-elliptic type. We prove that the sequence of iteration obtained by ADM converges strongly to the exact solution by establishing a construction of fixed points. For comparison purposes, we also use the Sinc function methodology to establish a new procedure to solve numerically the same system. It is shown that approximation by Sinc function converges to the exact solution exponentially, also handles changes in type. A numerical example is presented to demonstrate the theoretical results. It is noted that the two methods show the symmetry in the approximate solution. The results obtained by both methods reveal that they are reliable and convenient for solving balance laws where the initial conditions are of the Riemann type.

اللغة الأصليةEnglish
رقم المقال757
مستوى الصوت12
رقم الإصدار5
المعرِّفات الرقمية للأشياء
حالة النشرPublished - مايو 1 2020
منشور خارجيًانعم

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1701???
  • ???subjectarea.asjc.1600.1601???
  • ???subjectarea.asjc.2600.2600???
  • ???subjectarea.asjc.3100.3101???


أدرس بدقة موضوعات البحث “Fast convergence methods for hyperbolic systems of balance laws with riemann conditions'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا