Extension, embedding and global stability in two dimensional monotone maps

Ahmad Al-Salman, Ziyad AlSharawi, Sadok Kallel

نتاج البحث: المساهمة في مجلةمقالمراجعة النظراء

1 اقتباس (Scopus)

ملخص

We consider the general second order difference equation xn+1 = F(xn, xn-1) in which F is continuous and of mixed monotonicity in its arguments. In equations with negative terms, a persistent set can be a proper subset of the positive orthant, which motivates studying global stability with respect to compact invariant domains. In this paper, we assume that F has a semi-convex compact invariant domain, then make an extension of F on a rectangular domain that contains the invariant domain. The extension preserves the continuity and monotonicity of F. Then we use the embedding technique to embed the dynamical system generated by the extended map into a higher dimensional dynamical system, which we use to characterize the asymptotic dynamics of the original system. Some illustrative examples are given at the end.

اللغة الأصليةEnglish
الصفحات (من إلى)4257-4276
عدد الصفحات20
دوريةDiscrete and Continuous Dynamical Systems - Series B
مستوى الصوت25
رقم الإصدار11
المعرِّفات الرقمية للأشياء
حالة النشرPublished - نوفمبر 2020

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2607???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “Extension, embedding and global stability in two dimensional monotone maps'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا