Ensemble clustering using extended fuzzy k-means for cancer data analysis

Imran Khan, Zongwei Luo, Abdul Khalique Shaikh, Rachid Hedjam

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

24 اقتباسات (Scopus)


Clustering analysis is a significant research topic in discovering cancer using different profiles of gene expression, which is very important to successfully diagnose and treat the cancer decease. Many ensemble clustering methods have been developed to perform clustering using tumor data. Only few of them incorporates a significant number of input clusterings, the optimal number of clusters in each input clustering, and an appropriate ensemble method to combine input clusterings into a final clustering. In this paper, we introduce two new steps in the standard fuzzy k-means algorithm to determine the optimal number of input clusterings, and the optimal number of clusters in each clustering for ensemble clustering. The first one is to incorporate a penalty term for making the algorithm insensitive to the initialization of cluster centroids. The second one is to automate a clustering process for iteratively updating the feature weights. This step addresses the noise values in the dataset. We propose an ensemble clustering method, which combines a set of input clusterings into a final clustering having better overall quality. Experiments on real cancer gene expression profiles illustrate that the proposed algorithm outperformed the well-known clustering algorithms.

اللغة الأصليةEnglish
رقم المقال114622
الصفحات (من إلى)114622
عدد الصفحات1
دوريةExpert Systems with Applications
مستوى الصوت172
المعرِّفات الرقمية للأشياء
حالة النشرPublished - يونيو 15 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.2200???
  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.1700.1702???


أدرس بدقة موضوعات البحث “Ensemble clustering using extended fuzzy k-means for cancer data analysis'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا