Ensemble Classifiers for a 4-Way Classification of Alzheimer’s Disease

Noushath Shaffi*, Faizal Hajamohideen, Abdelhamid Abdesselam, Mufti Mahmud, Karthikeyan Subramanian

*المؤلف المقابل لهذا العمل

نتاج البحث: Conference contribution

1 اقتباس (Scopus)


Machine Learning (ML) techniques remain a massively influential tool in the Computer-Aided Diagnosis (CAD) of several health applications. Mainly due to its ability to rapid learning of end-to-end models accurately using compound data. Recent years have seen an extensive application of Deep Learning (DL) models in solving the 4-way classification of Alzheimer’s Disease (AD) and achieved good results too. However, traditional machine learning classifiers such as KNN, XGBoost, SVM, etc perform either the same or better than the DL models and usually require less data for training. This property is very useful when it comes to medical applications which is characterized by unavailability of large labelled datasets. In this paper, we demonstrate the application of state-of-the-art ML classifiers in the 4-way classification of AD using the OASIS dataset. Furthermore, an ensemble classifier model is proposed based on ML models. The proposed ensemble classifier achieved an accuracy of 94.92% which is approximately 5% accuracy increase compared to individual classifier approach. The source code used in this work are publicly available at: https://github.com/snoushath/AII2022.git

اللغة الأصليةEnglish
عنوان منشور المضيفApplied Intelligence and Informatics - Second International Conference, AII 2022, Proceedings
المحررونMufti Mahmud, Cosimo Ieracitano, Nadia Mammone, Francesco Carlo Morabito, M. Shamim Kaiser
ناشرSpringer Science and Business Media Deutschland GmbH
عدد الصفحات12
رقم المعيار الدولي للكتب (المطبوع)9783031248009
المعرِّفات الرقمية للأشياء
حالة النشرPublished - 2022
الحدث2nd International Conference on Applied Intelligence and Informatics, AII 2022 - Reggio Calabria, Italy
المدة: سبتمبر ١ ٢٠٢٢سبتمبر ٣ ٢٠٢٢

سلسلة المنشورات

الاسمCommunications in Computer and Information Science
مستوى الصوت1724 CCIS
رقم المعيار الدولي للدوريات (المطبوع)1865-0929
رقم المعيار الدولي للدوريات (الإلكتروني)1865-0937


Conference2nd International Conference on Applied Intelligence and Informatics, AII 2022
المدينةReggio Calabria

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700???
  • ???subjectarea.asjc.2600???

قم بذكر هذا