Deep Learning Techniques on Very High Resolution Images for Detecting Trees and Their Health Conditions

Yaseen Al-Mulla*, Ahsan Ali, Krishna Parimi

*المؤلف المقابل لهذا العمل

نتاج البحث: Conference contribution

ملخص

Very high-resolution remote sensing imagery and imagery from unmanned aerial vehicles have been acknowledged as well as valued in recent years for a variety of purposes, especially in object detection. On the other hand, deep learning (DL) has evolved as a tool for assessing pattern recognition applications and standard machine learning techniques. This study applied several DL applications in the Sultanate of Oman for detecting trees and examining their health status using very high-resolution satellite imagery data. The DL model efficiently distinguished the date palm trees from other plants and other land uses, according to our results. Aside from date palms, the model developed in this study can serve as a starting point for models to identify other types of diseased plants and trees.
اللغة الأصليةEnglish
عنوان منشور المضيفIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
مكان النشرPasadena, CA, USA
ناشرInstitute of Electrical and Electronics Engineers Inc.
الصفحات6542-6544
عدد الصفحات3
رقم المعيار الدولي للكتب (الإلكتروني)979-8-3503-2010-7
رقم المعيار الدولي للكتب (المطبوع)979-8-3503-3174-5
المعرِّفات الرقمية للأشياء
حالة النشرPublished - يوليو 16 2023
الحدث2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States
المدة: يوليو ١٦ ٢٠٢٣يوليو ٢١ ٢٠٢٣

سلسلة المنشورات

الاسمIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium

Conference

Conference2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
الدولة/الإقليمUnited States
المدينةPasadena
المدة٧/١٦/٢٣٧/٢١/٢٣

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.1900.1900???

قم بذكر هذا