Damped Techniques for the Limited Memory BFGS Method for Large-Scale Optimization

Mehiddin Al-Baali, Lucio Grandinetti*, Ornella Pisacane

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

14 اقتباسات (Scopus)


This paper is aimed to extend a certain damped technique, suitable for the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, to the limited memory BFGS method in the case of the large-scale unconstrained optimization. It is shown that the proposed technique maintains the global convergence property on uniformly convex functions for the limited memory BFGS method. Some numerical results are described to illustrate the important role of the damped technique. Since this technique enforces safely the positive definiteness property of the BFGS update for any value of the steplength, we also consider only the first Wolfe–Powell condition on the steplength. Then, as for the backtracking framework, only one gradient evaluation is performed on each iteration. It is reported that the proposed damped methods work much better than the limited memory BFGS method in several cases.

اللغة الأصليةEnglish
الصفحات (من إلى)688-699
عدد الصفحات12
دوريةJournal of Optimization Theory and Applications
مستوى الصوت161
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرPublished - مايو 1 2014

ASJC Scopus subject areas

  • ???subjectarea.asjc.1800.1803???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “Damped Techniques for the Limited Memory BFGS Method for Large-Scale Optimization'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا