TY - JOUR
T1 - Curcuma longa (Curcumin) Abrogates Hyperhomocysteinemia and Oxidative Stress in a Rat Model of Colon Cancer
AU - Waly, Mostafa I.
AU - Al Subhi, Lyutha
N1 - Funding Information:
The authors merit Sultan Qaboos University Internal Grant Fund (IG/AGR/FOOD/20/01) awarded to the authors for providing financial support to carry out this research project
Publisher Copyright:
© 2022 Wolters Kluwer Medknow Publications. All rights reserved.
PY - 2022/7
Y1 - 2022/7
N2 - Background: Hyperhomocysteinemia is involved in the pathogenesis of oxidative stress, a well-known etiological factor for different types of cancer, including colon cancer. Although Curcuma longa (curcumin) is a well-known antioxidant shown to prevent oxidative stress in different experimental models, yet its preventive role against hyperhomocysteinemia has not been addressed in experimental model for colon cancer. Objective: This study aimed to assess the protective role of C. longa (curcumin) as a natural antioxidant against the development of hyperhomocysteinemia-mediated oxidative stress and its associated carcinogenesis in rat colon. Methods: Forty-eight adult male Sprague Dawley rats were divided into four groups (12 rats/group): control, curcumin-supplemented group which received a daily dose of 200 mg curcumin/kg body weight, azoxymethane (AOM)-induced colon cancer group, and AOM group + curcumin supplementation. At the end of the experiment, 16 weeks, rats were sacrificed and colon tissues were collected to measure homocysteine level, oxidative stress markers [glutathione (GSH), total antioxidant capacity (TAC), lipid peroxides, and nitric oxide], and antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase). Colon histological sections were also examined for any histopathological changes. Results: The study results revealed that the colon tissue of the AOM-injected group had higher levels of homocysteine and markers of oxidative stress (GSH depletion, impairment of TAC, and inhibition of antioxidant enzymes) as compared to the control group, P < 0.05. Curcumin supplementation in the AOM + curcumin group significantly alleviated antioxidant enzymes activities as well as hyperhomocysteinemia, P < 0.05. AOM has also caused a significant increase in the size and numbers of aberrant crypt foci, marker lesions of colon tumors. Conclusion: Hyperhomocysteinemia results in the generation of reactive oxygen species, and thereby contributing to the oxidative stress-associated colon cancer pathogenesis. Curcumin as a functional food might be used as a preventative nutritional strategy against colon dysfunction that leads to cancer process.
AB - Background: Hyperhomocysteinemia is involved in the pathogenesis of oxidative stress, a well-known etiological factor for different types of cancer, including colon cancer. Although Curcuma longa (curcumin) is a well-known antioxidant shown to prevent oxidative stress in different experimental models, yet its preventive role against hyperhomocysteinemia has not been addressed in experimental model for colon cancer. Objective: This study aimed to assess the protective role of C. longa (curcumin) as a natural antioxidant against the development of hyperhomocysteinemia-mediated oxidative stress and its associated carcinogenesis in rat colon. Methods: Forty-eight adult male Sprague Dawley rats were divided into four groups (12 rats/group): control, curcumin-supplemented group which received a daily dose of 200 mg curcumin/kg body weight, azoxymethane (AOM)-induced colon cancer group, and AOM group + curcumin supplementation. At the end of the experiment, 16 weeks, rats were sacrificed and colon tissues were collected to measure homocysteine level, oxidative stress markers [glutathione (GSH), total antioxidant capacity (TAC), lipid peroxides, and nitric oxide], and antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase). Colon histological sections were also examined for any histopathological changes. Results: The study results revealed that the colon tissue of the AOM-injected group had higher levels of homocysteine and markers of oxidative stress (GSH depletion, impairment of TAC, and inhibition of antioxidant enzymes) as compared to the control group, P < 0.05. Curcumin supplementation in the AOM + curcumin group significantly alleviated antioxidant enzymes activities as well as hyperhomocysteinemia, P < 0.05. AOM has also caused a significant increase in the size and numbers of aberrant crypt foci, marker lesions of colon tumors. Conclusion: Hyperhomocysteinemia results in the generation of reactive oxygen species, and thereby contributing to the oxidative stress-associated colon cancer pathogenesis. Curcumin as a functional food might be used as a preventative nutritional strategy against colon dysfunction that leads to cancer process.
KW - Colon cancer
KW - curcumin
KW - hyperhomocysteinemia
KW - oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85142734737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142734737&partnerID=8YFLogxK
U2 - 10.4103/ijnpnd.ijnpnd_22_22
DO - 10.4103/ijnpnd.ijnpnd_22_22
M3 - Article
AN - SCOPUS:85142734737
SN - 2231-0738
VL - 12
SP - 180
EP - 185
JO - International Journal of Nutrition, Pharmacology, Neurological Diseases
JF - International Journal of Nutrition, Pharmacology, Neurological Diseases
IS - 3
ER -