Boundary feedback stabilization and Riesz basis property of a 1-d first order hyperbolic linear system with L-coefficients

Boumediène Chentouf*, Jun Min Wang

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةمقالمراجعة النظراء

15 اقتباسات (Scopus)

ملخص

This paper deals with the boundary feedback stabilization problem of a wide class of linear first order hyperbolic systems with non-smooth coefficients. We propose static boundary inputs (actuators) which lead us to a closed loop system with non-smooth coefficients and non-homogeneous boundary conditions. Then, we prove the exponential stability of the closed loop system under suitable conditions on the coefficients and the feedback gains. The key idea of the proof is to combine the regularization techniques with the characteristics method. Furthermore, by the spectral analysis method, it is also shown that the closed loop system has a sequence of generalized eigenfunctions, which form a Riesz basis for the state space, and hence the spectrum-determined growth condition is deduced.

اللغة الأصليةEnglish
الصفحات (من إلى)1119-1138
عدد الصفحات20
دوريةJournal of Differential Equations
مستوى الصوت246
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرPublished - فبراير 1 2009

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2603???
  • ???subjectarea.asjc.2600.2604???

بصمة

أدرس بدقة موضوعات البحث “Boundary feedback stabilization and Riesz basis property of a 1-d first order hyperbolic linear system with L-coefficients'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا