TY - JOUR
T1 - Analysis of true-color images from unmanned aerial vehicle to assess salinity stress on date palm
AU - Al-Rahbi, Sawsana
AU - Al-Mulla, Yaseen A.
AU - P. W. Jayasuriya, Hemanatha
AU - S. Choudri, Bheemanagoud
N1 - Funding Information:
This work was supported by The Research Council (TRC) of Sultanate of Oman for funding this study (Project No. ORG/EBR/13/004).
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Soils in arid countries predominantly suffer from salinity and drought related to environmental problems that can lead to crop stress and low productivity. In this study, true-color aerial images from an unmanned aerial vehicle were used to assess the effect of soil and water salinity on date palm growth. Random soil samples (n = 75) and irrigation water samples were collected from five sites and chemically analyzed. The custom algorithms were developed in ENVI® and MATLAB.® Green leaf index (GLI) was implemented to determine crop canopy attributes. Two segmentation methods namely between-class variance and foreground pixels were used to recognize the vegetation cover from other image pixels. The image analysis demonstrated that the mean value of GLI increased as the salinity levels decreased, R = 0.96 and 0.92 for soil electrical conductivity (EC) and water EC, respectively. The percentage of area covered with vegetation was correlated to soil EC and water EC with about 70% accuracy. On the other hand, the percentage of area covered with palm trees only was used accurately to evaluate the soil EC by R2 = 0.89 and the water EC by R2 = 0.86. The findings of this research can set foundations for the development of aerial color imaging on salinity stressed date palm monitoring, providing useful information for decision makers on salinity management.
AB - Soils in arid countries predominantly suffer from salinity and drought related to environmental problems that can lead to crop stress and low productivity. In this study, true-color aerial images from an unmanned aerial vehicle were used to assess the effect of soil and water salinity on date palm growth. Random soil samples (n = 75) and irrigation water samples were collected from five sites and chemically analyzed. The custom algorithms were developed in ENVI® and MATLAB.® Green leaf index (GLI) was implemented to determine crop canopy attributes. Two segmentation methods namely between-class variance and foreground pixels were used to recognize the vegetation cover from other image pixels. The image analysis demonstrated that the mean value of GLI increased as the salinity levels decreased, R = 0.96 and 0.92 for soil electrical conductivity (EC) and water EC, respectively. The percentage of area covered with vegetation was correlated to soil EC and water EC with about 70% accuracy. On the other hand, the percentage of area covered with palm trees only was used accurately to evaluate the soil EC by R2 = 0.89 and the water EC by R2 = 0.86. The findings of this research can set foundations for the development of aerial color imaging on salinity stressed date palm monitoring, providing useful information for decision makers on salinity management.
KW - date palm
KW - green leaf index
KW - remote sensing
KW - salinity stress
KW - unmanned aerial vehicle
KW - vegetation cover
UR - http://www.scopus.com/inward/record.url?scp=85072388674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072388674&partnerID=8YFLogxK
U2 - 10.1117/1.JRS.13.034514
DO - 10.1117/1.JRS.13.034514
M3 - Article
AN - SCOPUS:85072388674
SN - 1931-3195
VL - 13
JO - Journal of Applied Remote Sensing
JF - Journal of Applied Remote Sensing
IS - 3
M1 - 034514
ER -