A high-order ADI method for parabolic problems with variable coefficients

Samir Karaa*

*المؤلف المقابل لهذا العمل

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

10 اقتباسات (Scopus)


A high-order compact alternating direction implicit (ADI) method is proposed for solving two-dimensional (2D) parabolic problems with variable coefficients. The computational problem is reduced to sequence one-dimensional problems which makes the computation cost-effective. The method is easily extendable to multi-dimensional problems. Various numerical tests are performed to test its high-order accuracy and efficiency, and to compare it with the standard second-order Peaceman-Rachford ADI method. The method has been applied to obtain the numerical solutions of the lid-driven cavity flow problem governed by the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation. The solutions obtained agree well with other results in the literature.

اللغة الأصليةEnglish
الصفحات (من إلى)109-120
عدد الصفحات12
دوريةInternational Journal of Computer Mathematics
مستوى الصوت86
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرPublished - يناير 2009

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2600.2604???


أدرس بدقة موضوعات البحث “A high-order ADI method for parabolic problems with variable coefficients'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا