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Automatic Atrial Fibrillation Detection using Artificial Neural Network 

Abstract 

Atrial fibrillation is one of the serious heart diseases in which the heartbeats are 

irregular. Patients with this disease usually have shortness of breath, dizziness, and 

tiredness. Atrial fibrillation is considered a serious disease because the heart may 

develop clots of blood that might travel to the brain and cause a stroke, which may 

lead to death. 

Since it is heart disease, atrial fibrillation can be detected by observing the 

electrocardiograph (ECG) of the patient. The ECG is usually characterized by its 

peaks, intervals, and segments, and using the ECG, many features have been extracted 

to detect atrial fibrillation. Atrial fibrillation can be identified by observing the heart 

rate variability and the atrial activity from the ECG.  

In this work, I used an open-source feature extraction program that uses a modified 

version of the Pan-Tompkins algorithm and several other open-source algorithms to 

detect QRS complex and R peaks. Using the extracted features, I built an artificial 

neural network for automatic atrial fibrillation detection. Moreover, I measured the 

effect of using feature selection algorithms in enhancing the classification results. 

Also, I was able to overcome the challenge of the unbalanced dataset by using the 

weighted neural network and under-sampling the dataset to be almost balanced.  

Based on the achieved results, and using feature selection tools, the performance of 

the classification could be improved. The obtained performance results are compared 

with other powerful tools. In this work and using an artificial neural network, I got an 

overall F1 score of 76.5% on the test dataset which is in the range of results achieved 

by other researchers. The complexity of the proposed system is light and fast which 

makes it a good choice to be used in portable devices and real-time applications.  
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 ائي عن الرجفان الأذيني باستخدام الشبكة العصبية الاصطناعيةالكشف التلق

لخلاصةا  

الأذينيا يعاني    لرجفان  ما  عادة  منتظمة.  القلب غير  فيها ضربات  تكون  التي  الخطيرة  القلب  أمراض  أحد  هو 

المرضى المصابون بهذا المرض من ضيق في التنفس ودوخة وإرهاق. يعتبر الرجفان الأذيني مرضًا خطيرًا لأن  

 .فاةالقلب قد يصاب بجلطات دموية قد تنتقل إلى المخ وتسبب سكتة دماغية قد تؤدي إلى الو

القلب للمريض.   إشارة تخطيط، يمكن اكتشاف الرجفان الأذيني من خلال مراقبة  يصيب القلبنظرًا لأنه مرض  

القلب، تم استخراج العديد   إشارة تخطيط، وباستخدام  بقممها وفتراتها وشرائحهاعادةً  تخطيط القلب    تتميز إشارة

التعرف على  الرجفان الأذيني. يمكن  للكشف عن  الميزات  الرجفان الأذيني من خلال ملاحظة تقلب معدل   من 

 .القلب إشارة تخطيطضربات القلب والنشاط الأذيني من 

العمل، استخدمت برنامج   المصدرفي هذا  يستخدم نسخة معدلة من  الرجفان الأذيني    اتستخراج ميزلا  مفتوح 

 وقمم QRS شاف مجمعوالعديد من الخوارزميات مفتوحة المصدر الأخرى لاكت Pan-Tompkins خوارزمية

R.   الميزات الأذيني.   المستخرجة،باستخدام  الرجفان  التلقائي عن  للكشف  ببناء شبكة عصبية اصطناعية  قمت 

تمكنت  أيضًا،    .في تحسين نتائج التصنيف  اتتأثير استخدام خوارزميات اختيار الميز  بقياس قمت    ذلك،علاوة على  

مجموعة البيانات غير المتوازنة باستخدام الشبكة العصبية الموزونة وأخذ التغلب على التحدي المتمثل في    من

 عينات أقل من مجموعة البيانات لتكون متوازنة تقريبًا. 

 الأداء   نتائج  تمت مقارنة  .باستخدام أدوات اختيار الميزات  يمكن تحسين أداء التصنيف  بناءً على النتائج المحققة،

خرى. في هذا العمل وباستخدام شبكة عصبية اصطناعية، حصلت الأقوية  الدوات  الأ  التي تم الحصول عليها مع 

٪ في مجموعة بيانات الاختبار والتي تقع ضمن نطاق النتائج التي حققها باحثون  76.5بنسبة    F1على مجموع  

المحمولة وتطبيقات    يعد تعقيد النظام المقترح خفيفًا وسريعًا مما يجعله خيارًا جيداً لاستخدامه في الأجهزة آخرون.

 الوقت الفعلي. 
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CHAPTER 1: INTRODUCTION  

1.1 Cardiology Basics 

1.1.1 Heart  

The human heart is a muscular organ. It works to pump oxygenated blood to the rest of the 

body at each heartbeat. The heart consists of four chambers: two small upper atria and two 

large lower ventricles. One important part of the work of the heart is the sinoatrial node 

(sinus node) which is a group of cells that act as a natural pacemaker of the heart [1]. The 

normal heartbeat happens when the sinus node generates an electrical signal that travels 

through the heart causing the heart muscles to contract [2]. 

 
Figure 1.1: Heart Illustration [3] 

1.1.2 Electrocardiogram 

Electrocardiogram (ECG) is a graph that represents the measure of the electrical activity of 

the heart. Whenever the sinus node sends an electrical pulse, the ECG shows one wave that 

corresponds to one heartbeat. This wave represents the electrical signal traveling through 

the atria and ventricles, and it consists of three main parts, which are the P wave, the QRS 

complex, and the T wave. As shown in figure 1.2, the ECG signal's main characteristics are 
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the peaks (P, Q, R, S, and T), intervals (PR, RR, QRS, and QT), and segments (PR and ST). 

These characteristics have a normal amplitude or duration as can be seen in table 1.1[4]. 

Table 1.1: ECG Characteristics and Their Normal Durations  

Feature Description Duration 

RR 

interval 
The interval between the R wave and the next R wave 0.6-1.2 s 

P wave  First short upward movement of the ECG tracing 80ms 

PR 

interval 

Measured from the beginning of the P wave to the 

beginning of the QRS complex 
120-200ms 

QRS 

complex 

Normally begins with a downward deflection Q, a larger 

upwards deflection R, and ends with a downward S wave 
80-120ms 

PR 

segment 
Connects the P wave and the QRS complex 50-120ms 

ST 

segment 
Connects the QRS complex and the T wave 80-120ms 

T wave Normally a modest upward waveform 160ms 

QT 

interval 

Measured from the beginning of the QRS complex to the 

end of the T wave 
420ms 

 

In a normal person, the P wave is formed by the depolarization of the atria in which the 

electrical signal travels through the atria causing them to contract. Next, the QRS complex 

is formed by the depolarization of the ventricles and it is considered the reference point for 

signal analysis. The T wave is formed by repolarization in which the heart goes to its resting 

state [5]. 
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Figure 1.2: ECG Morphology [5] 

1.1.3 Atrial Fibrillation  

Atrial Fibrillation (AF or AFib) is an abnormal heart activity. The normal heart beats 60 – 

100 beats per minute at rest while in atrial fibrillation patients the heart beats rapidly 

irregular beats that may vary between 140-180 beats per minute. In atrial fibrillation, the 

atria produce random electrical signals that override the sinus node signal. These signals 

cause the atria to quiver and contract at a high rate of 400 times per minute. Some of these 

impulses affect the ventricles and cause them to contract at a varying force but with a lower 

rate of 140 -180 times per minute [6]. 

The variation of contracting rate between the atria and the ventricles causes the ventricles 

to fill partially and pump blood to the lung with insufficient amounts. This causes the patient 

to feel dizziness and shortness of breath. Other symptoms include chest pain, heart 

palpitation, and low blood pressure [7]. 



 

 

4 

 

 

Figure 1.3: Normal Sinus Rhythm vs Atrial Fibrillation [8] 

1.2 Problem Description 

Atrial Fibrillation is considered a serious heart disease that can result in a heart attack or a 

stroke when it is not detected in the early stages. Because of this abnormality, the heart can 

develop small clots of blood that might travel to the brain, which causes a stroke, which 

may lead to death. The risk of developing a blood clot and having a stroke depends on 

various factors and the doctor can assess this. Atrial fibrillation can be diagnosed with 

several tests, which include the measurement of heart rate variability. Early detection of 

atrial fibrillation makes it possible to save patients' life.  

The heart rate variability is the variation of the heartbeat intervals that can be detected from 

the ECG. The ECG has many features that can identify different rhythms of the heartbeat, 

which include normal sinus rhythm and abnormal arrhythmia. Many works have been done 

in this field to find the features of ECG that help in detecting atrial fibrillation.  

In this work, I extracted atrial fibrillation features from the ECG records after preprocessing 

and removing useless information. I compared three algorithms for feature selection. I 

applied an artificial neural network for classifying the ECG records into four normal classes, 

atrial fibrillation, other, and noisy records. 
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1.3 Related Work 

The PhysioNet/Computing in Cardiology (CinC) Challenge 2017 is a contest that invited 

researchers to solve this problem in which the competitors should differentiate atrial 

fibrillation from normal, noisy, and other rhythms. The challenge provides short-term ECG 

recordings (from 9-61 s) performed by patients using AliveCor handheld devices. The 

dataset is divided into 8,528 in the public training set and 3,658 in the private hidden test 

set. The number of recordings in each class and the time length of recordings are shown in 

table 1.2. The data are stored as 300 Hz, 16-bit files with bandwidth 0.5-40 Hz and a ± 5 

mV dynamic range. The dataset has 4 classes which are normal sinus rhythm, atrial 

fibrillation, other rhythms, and noise. Another rhythm is all non-AF abnormal rhythms and 

noisy is the signal that is too noisy to be classified. 75 teams entered the challenge and 4 of 

them won with an equal score [9]. Here I will highlight the four best score works. 

Table 1.2: Data Profile of the Training Set 

Type # Recording 

Time length (s) 

Mean SD Max Median Min 

Normal 5154 31.9 10.0 61.0 30 9.0 

AF 771 31.6 12.5 60 30 10.0 

Other rhythm 2557 34.1 11.8 60.9 30 9.1 

Noisy 46 27.1 9.0 60 30 10.2 

Total 8528 32.5 10.9 61.0 30 9.0 

 

The first work that won the challenge is proposed by Datta et al. [10]. They proposed a two-

layer binary cascaded approach. They extracted more than 150 features categorized into: 

morphological, prior art AF, HRV, frequency, statistical, other abnormalities, and detecting 

noisy recording features. They used feature selection to improve the classification using 
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statistical feature selection tools like Maximal Information Coefficient (MIC) and minimum 

Redundancy Maximum Relevance (mRMR). For classification, they used adaptive boosting 

in two-layer cascaded classifiers. In the first layer, the signals are classified into AF + noisy 

or normal + other. In the second layer, there are two classifiers for each of the two classes 

from the previous step and they will give the final classification. For each of the three 

classifiers, two parameters of the ensemble classifiers which are the number of learning 

cycles and learning rate are optimized using the Bayesian optimization function. Feature 

extraction is also applied before each classifier in the two layers but there is a different set 

for each classifier. The performance of their work is shown in table 1.3. This table shows 

how their proposed system performs on the training dataset and the hidden test set. The 

values in the table are the F score of normal, AF, other, and noisy, respectively. The 

limitation to this work is the unavailability of actual disease information corresponding to 

each recording in the other rhythm class which makes the classification task more 

challenging to identify the proper features, thus reducing the classification accuracy. 

Table 1.3: Performance of Datta et al Proposed System 

Data set Fnormal FAF Fother Fnoisy 

Complete training data 0.99 0.94 0.98 0.96 

Complete test data 0.92 0.82 0.75 0.83 

 

Another work that won the challenge has been proposed by Hong et al [11]. They propose 

an ensemble classifier using three different kinds of features, which are Expert features, 

Deep features, and Center wave features. The total number of features extracted is over 600 

features. The expert features are categorized into statistical features, signal-processing 

features, and medical features. The deep features are the last hidden layer extracted from 

the deep neural network as features. Two different deep feature extractors have been used. 

One deep feature extractor is based on a deep residual convolution neural network and it is 

trained using expanded data. The second deep feature extractor is based on a recurrent 

neural network and it is trained using center wave data. The center wave features are 

extracted from the center wave, which is the most representative wave among the signal. 

They extract the three types of features and combine them to be trained using individual 
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classifiers. The individual classifiers used are extreme gradient boosting of decision trees 

(XGBoost). The classifiers are assembled by averaging the predicted probabilities. The final 

system ensemble five XGBoost, and each XGBoost has 3000 trees with max depth = 9, min 

child weight = 3. The performance of their proposed system is shown in table 1.4. The table 

shows the F score for the four classes, normal, AF, other, and noisy. The F score calculated 

using Expert Features, Expert and Centerwave Features, and Expert, Centerwave, and Deep 

Features. In addition, the overall F score is shown. Moreover, they have experimented with 

the system in three different scenarios, the first using only expert features, the second using 

expert and center wave features, and the third using all three types of features. The 

researchers in this work state that this system could detect more classes of heart diseases if 

providing more data. 

Table 1.4: Proposed System Performance of Hong et al.  

Features Fnormal FAF Fother Fnoisy F1 

E 0.9059 0.7908 0.7543 0.6574 0.7771 

E + C 0.9086 0.7899 0.7622 0.6603 0.7803 

E + C + D 0.9204 0.8692 0.8068 0.8156 0.8530 

 

Teijeiro et al. [12] proposed the third work that won the challenge. The proposed work is 

based on features provided by abductive interpretation of the signal using the Construe 

algorithm. In their work, they extracted two types of features, which are global features and 

pre-beat features. The global features are categorized into rhythm features, morphological 

features, and signal quality features. The global features, which are 79 features in total, 

summarize the information provided by the Construe algorithm for adductive interpretation. 

Pre-beat features are extracted after the global features to classify the records that cannot be 

classified globally, and these features are global but disaggregated to the heartbeat scope. 

After the feature extraction, global classification is applied to the global features and 

sequence classification is applied to the pre-beat features. For the global classification, they 

used Extreme Tree Gradient Boosting (XGBoost) algorithm. They used exhaustive grid 

search and 8-fold cross-validation for tuning the hyperparameters. The final optimized 

classifier was with the following parameters: Maximum tree depth: 6, Learning rate: 0.2, 
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Gamma: 1.0, Column subsample by tree: 0.9, Min. child weight: 20, Subsample: 0.8, and 

Number of boosting rounds: 60. The sequence classification method used is based on 

Recurrent Neural Network (RNN), specifically; they used Long Short-Term Memory 

networks (LSTM). The classifier uses 4 LSTMs, the first one preprocesses the sequence of 

transformed features and returns a new sequence, which is subsequently used by the other 

LSTMs. All the LSTMs used has 128 units. The two classifiers are stacked using Linear 

Discriminant Analysis (LDA) classifier and the final classification is the output of the stack 

classifier. The performance of their proposed system is shown in table 1.5. The table shows 

the F score of the system when using only either one of the classifiers and when using them 

both stacked using 8-fold cross-validation. 

Table 1.5: Proposed System Performance of Teijeiro et Al.  

Method 

Fold Number 

Mean 

0 1 2 3 4 5 6 7 

XGBoost 0.84 0.84 0.85 0.85 0.82 0.80 0.82 0.82 0.83 

RNN 0.82 0.81 0.84 0.83 0.86 0.83 0.83 0.83 0.83 

LDA-stacker 0.85 0.84 0.86 0.86 0.85 0.83 0.84 0.85 0.85 

 

Teijeiro et al. [12] proposed the third work that won the challenge. The proposed work is 

based on features provided by the abductive interpretation of the signal using the Construe 

algorithm. In their work, they extracted two types of features, which are global features and 

pre-beat features. The global features are categorized into rhythm features, morphological 

features, and signal quality features. The global features, the fourth work that won the 

challenge was proposed by Zabihi et. al. [13]. In their work, they manually extracted 491 

features, which are a combination of features extracted from the signal, and features 

extracted from the prediction of the base-level classifiers. These features are ranked using 

a random forest classifier based on their importance, which is evaluated based on the 

reduction of entropy. The 150 highest ranked features are selected and listed as base-level 

time domain and morphological features, base-level frequency domain features, base-level 

time-frequency domain features, base-level nonlinear (phase space) features, and meta-level 
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features. For classification, they used an external random forest classifier using 500 decision 

trees and a random selection of features at each node creation. Then, they used bagging to 

train each decision tree, and 30 features are randomly selected for each node. The 

performance of their proposed classifier is shown in table 1.6. The table shows the F score 

of the four classes and the mean F score when applied to the training dataset and the test 

dataset. 

Table 1.6: Proposed System Performance of Zabihi et al. 

Evaluation 

metrics 
Fnormal FAF Fother Fnoisy F1 

Training set 

(%) 
90.49±0.96 79.43±4.52 75.64±3.11 61.11±7.53 81.85±2.57 

Testing set 

(%) 
90.87 83.51 73.41 50.42 83 

 

1.3.1 Beyond CinC 2017 

After the challenge, many researchers have tackled the problem using the same dataset used 

in the challenge to improve the results. P. Cao et al. [14] presents one of these works. In 

their work, they focused on balancing the dataset to get better results. They propose a data 

augmentation strategy for balancing the data. The strategy starts by detecting the QRS 

complex using the Pan-Tompkins algorithm and assigning the beginning of each complex 

to then take the segment between the first and last assigned starting point as a selected 

sequence. Then, the selected sequence is duplicated and concatenated to the duplicate to be 

resampled using a sliding window. For comparison, they used two different methods for 

data augmentation, which are window slicing and permutation. After preparing the balanced 

dataset, they used a recurrent neural network for classification. They used a 2-layer LSTM 

network with cross-entropy as a loss function. For optimizing the network, they used Adam 

and stochastic gradient descent optimizers. The stochastic gradient descent replaces the 

Adam optimizer for a better result after it fails to decrease the loss for 5 epochs. They use 

10-fold cross-validation to evaluate the performance. The performance of the system while 

using the data augmentation and without using it is shown in table 1.7. The table shows the 

F score for only three classes while they ignored the noisy signal class. The limitation of 

this system is that it may disrupt the patterns of RR interval of the raw signal thus generate 
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new samples with non-physiological rhythms. In addition, the data augmentation was not 

tested in other classical deep neural network architectures, such as the convolutional neural 

network.  

Table 1.7: Proposed System Performance of P. Cao et Al.  

Evaluation 

metrics 
Fnormal FAF Fother F1 

With Data 

Augmentation 
0.860±0.028 0.754±0.029 0.677±0.035 0.764±0.028 

Without Data 

Augmentation 
0.380±0.075 0.308±0.120 0.380±0.066 0.356±0.046 

 

X. C. Cao et al. [15] propose another work that also tackled the same problem using the 

same dataset. Like the previous work, their concern was also the unbalanced dataset. To 

solve this issue, they re-segmented the ECG records into short samples of 9 seconds. They 

intercept short samples depending on the length of the signal. For normal rhythm and other 

abnormalities classes, they intercept from the middle without overlapping. For atrial 

fibrillation and noisy classes, they intercept more segments with overlapping since they 

have few numbers of samples. After this process, they end up with 19188 samples. After 

balancing the dataset, they apply derived wavelet frames for signal decomposition to further 

prepare the data. This work proposes two convolutional neural network models, which are 

fast down-sampling residual convolutional neural network (FDResNet) and multi-scale 

decomposition, enhanced fast down-sampling residual convolutional neural network 

(MSResNet). FDResNet model is composed of three main parts, which are a fast down-

sampling module, a residual convolution module, and a classification module. The fast 

down-sampling module is mainly two convolutional layers. The residual convolutional 

module is three modules consisting of convolutional layers followed by a residual short 

circuit. The classification module consists of 1 fatten layer, 2 full connection layers, and a 

softmax classifier. The other convolutional model is MSResNet and it consists of three 

FDResNet followed by a small neural network. The performance of this work can be seen 

in table 1.8 represented as the F score for three classes and the overall F score. 
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Table 1.8: Performance of X. C. Cao et. al Proposed System 

Fnormal FAF Fother Overall F1 

0.881 0.966 0.851 0.899 

 

1.3.2 Other works 

Other than these works, some researchers have also worked to solve this problem using 

other sources of data. One most used source is the Massachusetts Institute of Technology 

(MIT)-Boston's Beth Israel Hospital (BIH) Atrial fibrillation database. The database has 23 

long-term ECG recordings of human subjects with atrial fibrillation with a duration of 10 

hours for each record. Each record contains two ECG signals each sampled at 250 samples 

per second with 12-bit resolution over a range of ±10 millivolts. They are made using 

ambulatory ECG recorders with a typical recording bandwidth of approximately 0.1 Hz to 

40 Hz. The recordings contain rhythm annotations of types AFIB (atrial fibrillation), AFL 

(atrial flutter), J (AV junctional rhythm), and N (used to indicate all other rhythms) [16]. 

Wang et al. [17] propose one of the recent works that have used this database. In their work, 

they extract features based on wavelet packet transform to be fed to the artificial neural 

network for classification. After filtering the ECG segments, the wavelet coefficients are 

obtained from the decomposed ECG and divided into an equal number of segments. From 

the segments, the correlation matrix is computed, and based on it the histogram is 

constructed. The features needed for the classifier are extracted from the histogram and 

assembled as a feature set. To classify the records, these features are fed to a 3-layers neural 

network. The network has an input layer of 4 neurons, an output layer of 2 neurons, and a 

hidden layer of 10 neurons. They used the sigmoid function as an activation function in the 

hidden layer. The value of adaptive learning rate was 0.1 by setting mean square error no 

more than 0.001. The work they proposed performed well as can be seen in table 1.9. The 

table shows the performance for different types of classifiers that have been used; support 

vector machine (SVM), k-nearest neighbors (KNN), and artificial neural network (ANN). 
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Table 1.9: Proposed System Performance of Wang et Al.  

Classifier Accuracy (%) Sensitivity (%) Specificity (%) 

SVM 97.2 97.8 97.4 

KNN 96.3 95.4 96.1 

ANN 98.8 98.7 98.9 

 

Faust et al. [18] propose another work that used the same dataset. In this work, they propose 

a deep recurrent neural network to classify the signal. They used 20 of the signals from the 

MIT-BIH database for training and 3 for testing. They partition the long signals with a 

sliding window of 100 beats into blocks that are fed directly to a recurrent neural network. 

The proposed model consists of two bidirectional long-short term memory (LSTM), two 

fully connected layers, and a global max-pooling layer. The two LSTM layers, forward and 

backward, have cells twice the length of the input sequence and they work to learn and 

extract the features from the heart rate data sequence. Then, the resulting features are passed 

to the global max-pooling layer to be compressed before proceeding to the fully connected 

layers where they will be given the final classification. The model has been trained and 

evaluated with 10-fold cross-validation and tested with blind-fold evaluation. The 

performance of their proposed model can be seen in table 1.10. The 10-fold cross-validation 

was applied to 20 records of the database while the other 3 records were used for testing the 

proposed model using blind-fold validation.  

Table 1.10 Performance of Faust et. al Proposed System 

Evaluation Metrics Accuracy Sensitivity Specificity 

Cross-Validation 98.51% 98.32% 98.67% 

Blind Fold 

Validation 
99.77% 99.87% 99.61% 
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1.4 Thesis Outline 

This thesis is organized as follows: 

Chapter 2 presents the literature survey in which AF features, selection tools, and machine 

learning techniques are mentioned. Chapter 3 shows the details of the methodology and the 

steps that have been taken to accomplish the work. Each step is explained in detail. Chapter 

4 analyzes the obtained results with explanatory tables and graphs. Chapter 5 concludes the 

report with recommendations and future work.  
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CHAPTER 2: LITERATURE REVIEW 

To know more about the problem and how to solve it, I first start with signal processing and 

knowing about atrial fibrillation features in literature and the other abnormalities. Moreover, 

I also highlight the use of feature selection algorithms in the next sections. Since I am using 

neural networks, I also give brief information about them and their usage in the last sections. 

2.1 Signal Processing 

As mentioned previously, the ECG is characterized by the peaks, the intervals, and the 

segments. From these characteristics, many features can be extracted to detect atrial 

fibrillation and other abnormalities.  

2.1.1 Atrial Fibrillation Features 

One of the most used characteristics for extracting features is the RR interval. The RR 

interval is the time between two successive R peaks as can be seen in figure 2.1. Tateno et 

al. [19] proposed to use the Kolmogorov-Smirnov test and the standard coefficients of 

variation test based on RR and ΔRR, which is the difference between two successive RR 

intervals. They use the standard density of histogram of RR and ΔRR as a template for atrial 

fibrillation detection. The compare the coefficient of variation with the standard coefficient 

of variation (CV test) and compare the density histogram with the standard density of 

histogram (Kolmogorov-Smirnov test).  

On the other hand, Ghodrati et. al [20] extracted features based on the absolute deviation of 

RR interval and ΔRR, and they call them normalized absolute deviation and normalized 

absolute difference. In another work, Ghodrati et Al. [21] presented other features based on 

the statistical analysis of the RR interval in which they compared Gaussian and Laplace 

probability density functions when applied to the histogram of the normalized RR 

differences using the Neyman-Pearson detection approach.  

Billeci et al. have mentioned other features, which are extracted from the RR interval, [22] 

include the mean, the minimum, and the maximum value of the RR intervals. The root 

means square of the successive differences (RMSSD), the mean of the absolute weighted 
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successive difference (MAWSD), the coefficient of sample entropy (CoSEn), the turning 

point count (TPC), and the Katz Fractal Dimension (KFD).  

 

Figure 2.1: RR Interval [23] 

Another characteristic that is used to detect atrial fibrillation is the P-wave, which happens 

because of the atrial activity. The absence of the P-wave indicates the presence of atrial 

fibrillation. Firoozabadi et al. [24] extracted several features based on the P-wave. These 

features include the mean and standard deviation of the following measures within the 

segment: PR interval, P-wave duration, P-wave onset-peak duration, P-wave amplitude 

(peak-onset). Also, the number of P-waves detected in the segment, the presence or absence 

of potential P-wave in average beat, mean and standard deviation of the correlation of P-

waves in average beat with each beat in the segment.  

In the same field, Censi et al. [25] worked to quantify the P-wave variability over time using 

three algorithms; based on cross-correlation function, butterfly plots, and dynamic time 

warping. Based on these algorithms, they extracted three novel indices: the first one is based 

on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI), 

the second one is associated with the variation in the amplitude of the P-waves (Amplitude 

Dispersion Index, ADI), and the third one is sensible to the phase shift among P-waves 

(Warping Index, WI). Based on these indices and from P-wave templates, they extracted 

features that were used to identify atrial fibrillation patients. 
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2.1.2 Other Abnormalities 

Other features can distinguish atrial fibrillation from other abnormalities. Some of the 

features can be extracted in the time domain, other features can be extracted in the frequency 

domain, and others in the time-frequency domain.  

There are other heartbeat abnormalities or arrhythmia, which are categorized by the 

chambers of the heart in which they occur and by what effect they have on the heart's 

rhythm. The two main types of heart arrhythmia are tachycardia and bradycardia. 

Tachycardia refers to a fast heart rhythm of a rate over 100 beats per minute. Bradycardia 

refers to a slow heart rhythm of heart rate below 60 beats per minute, and it is caused by a 

failure of the heart signals to fire, as they should.  There are three major types of tachycardia: 

Atrial tachycardia (starting in the atria), Supraventricular tachycardia (starting above the 

ventricles), and Ventricular tachycardia (starting in the ventricles) [23]. Atrial fibrillation is 

one of the most common supraventricular tachycardia. Other abnormalities that are in the 

same category are paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and 

Wolff–Parkinson–White syndrome. 

2.2 Features Selection  

Many studies have addressed the importance of feature selection in classification problems. 

Feature selection is the action of choosing a subset of features from an already existing set. 

Feature selection is used to improve classification accuracy by removing irrelevant and 

redundant features. Feature selection algorithms can be categorized into wrapper, filter, and 

embedded. Wrapping methods compute models with a certain subset of features and 

evaluate the importance of each feature. Then they iterate and try a different subset of 

features until the optimal subset is reached. Filter methods use a measure other than error 

rate to determine whether that feature is useful. Rather than tuning a model, a subset of the 

features is selected by ranking them by a useful descriptive measure. Embedded methods 

perform feature selection as a part of the model creation process. This method is between 

the two methods of feature selection previously explained, as the selection is done in 

conjunction with the model tuning process [26]. 

In this thesis, three different algorithms based on the filter type were compared, the 

minimum redundancy maximum relevance (mRMR) algorithm, Chi-square tests, and 

ReliefF algorithm. I chose to use filter methods to avoid overfitting the model.  
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2.2.1 Minimum Redundancy Maximum Relevance (mRMR) Algorithm 

Minimum Redundancy Maximum Relevance (mRMR) Algorithm selects the features that 

have a high correlation with the target class but low correlation among themselves. This 

algorithm uses the mutual information difference (MID) criterion as an objective function 

of relevance and the mutual information quotient (MIQ) criterion as an objective function 

of redundancy [27]. As can be seen in equation (2.1), the purpose of this algorithm is to 

maximize the relevance which is 𝐼(𝑥, 𝑦) and minimize the redundancy which is 

1

|𝑆|
∑ 𝐼(𝑥, 𝑧)𝑧∈𝑆  by finding the optimal set S of features. The relevance and redundancy are 

defined with mutual information I(.) [28]. 

max
𝑥∈𝑆𝑐

𝑀𝐼𝑄𝑥 = max
𝑥∈𝑆𝑐

𝐼(𝑥, 𝑦)

1
|𝑆|

∑ 𝐼(𝑥, 𝑧)𝑧∈𝑆

 
(2.1) 

2.2.2 Chi-Square (χ2) Test 

Chi-Square (χ2) Test is a simple and general algorithm that measures how a model compares 

the actual observed data and the expected value. The algorithm depends on the difference 

between the actual and the expected values, the degrees of freedom that refer to the 

maximum number of logically independent values, and the size of the samples. This 

algorithm can be used to test whether two variables are related or independent from each 

other. Also, it can be used to test the goodness of fit between an observed distribution and 

a theoretical distribution of frequencies. Equation (2.2) represents the formula of the Chi-

square algorithm, where E is the expected value or in this case the category, O is the 

observed value, and c is the degree of freedom [29]. 

𝜒𝑐
2 = ∑

(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖
  

(2.2) 

2.2.3 ReliefF Algorithm 

ReliefF Algorithm is one of the most widely used algorithms for feature selection and it is 

one of the Relief algorithms family. It is an enhanced version of the Relief algorithm to be 

used for multi-class classification problems and to be more robust against noise and 

incomplete data.  This algorithm is based on finding the nearest hit and nearest miss of an 

instance, which means the neighboring features of the same class and the neighboring 
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features of the opposite class, respectively. ReliefF algorithm takes an instance and finds its 

neighbors and according to the distances between them, it gives them weights. The weight 

value is high if the instance distinguishes the opposite class and not the same class [30]. 

Equation (2.3) shows the weight update for the features using the ReliefF algorithm where 

xr is a random observation and xq is the nearest neighbor in the same class. 

𝑊𝑗
𝑖 = 𝑊𝑗

𝑖−1 −
Δ𝑗(𝑥𝑟 , 𝑥𝑞)

𝑚
∙ 𝑑𝑟𝑞  

(2.3) 

The weight update for the features in the case where xr and xq are not in the same class will 

be as in equation (2.4). 

𝑊𝑗
𝑖 = 𝑊𝑗

𝑖−1 +
𝑝𝑦𝑞

1 − 𝑝𝑦𝑟

∙
Δ𝑗(𝑥𝑟 , 𝑥𝑞)

𝑚
 

(2.4) 

Where Δ𝑗(𝑥𝑟 , 𝑥𝑞) is the difference in the value of the feature between observations xr and 

xq. 𝑑𝑟𝑞 is a distance function, m is the number of iterations, 𝑝𝑦𝑟
 is the prior probability of 

the class to which xr belongs, and 𝑝𝑦𝑞
 is the prior probability of the class to which xq 

belongs. 

2.3 Artificial Neural Network 

Machine Learning is a part of artificial intelligence that studies the algorithms and tools 

used to learn and improve its analyses. These algorithms use input and output datasets to 

recognize the patterns and learn from experience, which trains the machine to forecast future 

events and make recommendations without human interaction. Machine learning 

techniques can be categorized into two main categories: supervised and unsupervised 

algorithms. Supervised algorithms use datasets labeled as inputs and outputs to train a 

model. The trained model is used for any other set of data to predict and forecast their 

output. The supervised algorithms can be seen in classification problems. On the other hand, 

unsupervised algorithms use unlabeled data, and the system will try to recognize the 

relations between the data and divide them into groups of the same category that will be 

decided by the algorithm. Unsupervised algorithms can be seen in clustering problems [31].  

Artificial Neural Network is one of the machine learning techniques that is being widely 

used in many applications to analyze the data and learn to recommend the output. The neural 

network can be thought of as an artificial model of how the human neural system work. The 
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neural network consists of neurons that are organized into layers. It starts with an input layer 

that has several neurons equal to the number of input variables. The input layer is followed 

by the hidden layer, which varies in size depending on the application, it can be one hidden 

layer (shallow neural network) or more than one layer (deep neural network). At the end of 

the network, there is an output layer. In classification problems, the output layer has several 

neurons equal to the number of classes. In each layer, there are biases and weights for every 

neuron and these keep changing in a process called training until the network reaches the 

target results by satisfying an objective function. For training, special optimization 

algorithms are used. Each neuron has an activation function that works by linearly 

combining the inputs of the neuron into one output. An example of a neural network is 

shown in figure 2.2 [31]. 

 

Figure 2.2: Example of Neural Network [31] 

2.3.1 Neural Network Optimization  

Optimization or training algorithms are used in a neural network to update the weights and 

biases of the neurons to satisfy an objective function. The weights and biases are updated 

using small steps called the learning rate. The learning rate is a hyperparameter that should 

be set to control how much the weights and biases are adjusted. Setting the learning rate to 
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a very small value may result in training for a long time and setting it to a very large value 

may result in missing the optimal result. The objective function or the cost function is a 

function that measures the performance of a machine-learning model for given data by 

quantifying the error between predicted values and expected values. It is the real-valued 

function whose value is to be either minimized or maximized over the set of feasible 

alternatives. The cost function that aims to minimize the error between the prediction and 

the expectation is usually called the loss function.  

Loss functions can be categorized based on their application into regression loss functions 

and classification loss functions. In classification, there are exponential loss, square loss, 

hinge loss, logistic loss, savage loss, and tangent loss. Square loss is more commonly used 

in regression but can be utilized in classification. It is convex and smooth. It is slower than 

hinge and logistic loss functions but can solve for the regularization parameter using cross-

validation. Logistic loss is also called cross-entropy loss and it is less sensitive to outliers 

because it is convex and grows linearly for negative values. The exponential loss is convex 

and grows exponentially for negative values, which makes it more sensitive to outliers. 

Hinge loss is convex and continuous but not smooth (is not differentiable) so cannot be used 

with gradient descent methods. Tangent loss and savage loss are quasi-convex and bounded 

for large negative values, which makes them less sensitive to outliers. Both have been used 

in gradient descent methods [32]. 

Optimization algorithms can be divided into two groups; one is used for differentiable loss 

functions and the other for non-differentiable loss functions. Using the gradient to optimize 

a function has been proven to be easier and so many research works have been done in 

algorithms that use the gradient. Some groups of these algorithms are bracketing algorithms, 

local descent algorithms, first-order algorithms, and second-order algorithms.  

One of the most popular algorithms and most common way for optimization is the first-

order algorithms, which are generally called the gradient descent algorithms. The gradient 

descent algorithms use the gradient to choose the direction to move in the search space. It 

starts by calculating the gradient of the function and then following it in the opposite 

direction. The gradient descent has three variations that use a different amount of data to 

compute the gradient and they try to make a trade-off between the accuracy and the time 

consumed. These variants are batch gradient descent (using all samples), stochastic gradient 

descent (using one sample), and mini-batch gradient descent (using a small subset of 
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samples). Some of the algorithms that depend on gradient descent are monument, Adagrad, 

and Adam. Monument helps accelerate stochastic gradient descent in the relevant direction 

and so the convergence will be faster with fewer oscillations. Adagrad adapts the learning 

rate to the parameters, which eliminates the need to manually tune the learning rate. 

Adaptive Moment Estimation (Adam) also computes adaptive learning rates for each 

parameter while keeping an exponentially decaying average of the past gradient [32]. 

Another algorithm is scaled conjugate gradient backpropagation, which is based on 

conjugate directions, but this algorithm does not perform a line search at each iteration. The 

conjugate gradient method is generalized by the nonlinear conjugate gradient method for 

nonlinear optimization. In addition, there is a resilient backpropagation algorithm, which 

eliminates the harmful effects of the magnitudes of the partial derivatives by only 

considering the sign of the derivative to determine the direction of the weight update [33]. 

2.3.2 Activation Functions 

Activation Functions or transfer functions are used in artificial neural networks to transform 

an input signal into an output signal to be fed as input to the next layer. In an artificial neural 

network, the sum of products of inputs and their weights are calculated and then passed to 

an activation function to get the output of that particular layer and supply it as the input to 

the next layer [34]. 

Many different activation functions can be categorized as linear and non-linear functions. 

Some of the known functions are sigmoid function, hyperbolic tangent function, softmax 

function, softsign function, rectified linear unit function, softplus function, exponential 

linear function, max out function, swish function, the exponential linear squashing, and hard 

exponential linear squashing [35]. In this section, I focus on three functions, which are used 

in the proposed system. 

One of the most used activation functions is the hyperbolic tangent transfer function known 

as tanh function, which is a smooth zero-centered function with an output bound between -

1 and 1. The definition of the hyperbolic tangent transfer function is given in equation (2.5). 

The shape of the function is shown in figure 2.3. 

𝑡𝑎𝑛ℎ(𝑛) =
𝑒𝑛 −  𝑒−𝑛

𝑒𝑛 +  𝑒−𝑛
 

(2.5) 
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Figure 2.3: Hyperbolic Tangent Transfer Function [36] 

Rectified Linear Unit (ReLU) also known as Positive linear transfer function is a function 

that is a straight line only for positive values and zeroes elsewhere. It is defined in equation 

(2.6) and the shape in figure 2.4. 

𝑚𝑎𝑥(0, 𝑛) =  {
𝑛𝑖 ,    𝑖𝑓 𝑛𝑖 ≥ 0
0,    𝑖𝑓 𝑛𝑖 < 0

      
(2.6) 

 

Figure 2.4: Positive Linear Transfer Function [37] 

The Softmax function is mostly used for classification problems in the output layer. It is 

used to compute probability distribution from a vector of real numbers. The Softmax 

function produces an output which is a range of values between 0 and 1, with the sum of 

the probabilities equal to 1. This function is defined in equation (2.7). 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑛) =
𝑒𝑛𝑖

∑ 𝑒𝑛𝑗
𝑗

 
(2.7) 
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CHAPTER 3: Atrial Fibrillation Automatic Detection 

In this chapter, I will explain the details of the system that I used to solve the problem at 

hand. The chapter starts with sections that explain the tools and dataset used in this project. 

Next, a section that explains the details and steps followed in the methodology.  

3.1 Tools  

Since I have a prior experience with MATLAB, I chose to code my system using MATLAB 

R2020a. All experiments were run on a 64-bit based laptop with Intel Core i7 CPU at 2.7 

GHz, 2 cores, and 4 logical processors. The system runs 8 GB RAM.  

3.2 Data  

The dataset used for this work is the same dataset used in Physionet Challenge 2017. I used 

the training set which contains a collection of 8528 ECG recordings. The dataset has an 

unbalanced number of each class as follows: 5154 normal rhythms, 2557 other rhythms, 

771 atrial fibrillations, and 46 noisy signal records. The signals’ waveforms can be seen in 

figure 3.1. The recordings are labeled by an outsourced company and provided by AliveCor 

with the data. 

 

Figure 3.1: The ECG Signal of the Four Classes [38] 
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The data was found to have some recordings that are labeled as normal, atrial fibrillation, 

or other rhythm are being so noisy and hard to be identified by eye. So, the data has been 

re-labeled again by the challenge organizing team until they end up with version 3 of the 

dataset. The third version of the dataset has 5076 Normal Rhythm, 2415 Other Rhythm, 758 

Atrial Fibrillation, and 279 Noisy Signals. 

I used the challenge training dataset for training, validation, and testing by partitioning it 

into three parts: 70% for training, 15% for validation, and 15% for testing. The data division 

can be seen in table 3.1 is after using a partitioning function that divides the data by blocks 

of indices.  

Table 3.1: Data Division 

Subset Total Normal 

Rhythm 

Other 

Rhythm 

Atrial 

Fibrillation 

Noisy 

Signal 

Training 5970 3614 1652 512 192 

Testing 1279 724 379 130 46 

Validation 1279 738 384 116 41 

   

3.3 Methodology  

The proposed system has five stages: pre-processing, features extraction, features selection, 

classifier training, and results in the evaluation. The block diagram of the system is shown 

in figure 3.2.  

Pre-
processing

Features 
Extraction

Features 
Selection

Classifier 
Training

Results 
Evaluation

 

Figure 3.2: The Proposed System Block Diagram  

Based on this diagram, I developed a MATLAB program which is attached in appendix A. 
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3.3.1 Pre-processing 

For the first stage of the system, I used the approach developed in [10]. The program 

performs noise cancelation on the signal. Noise removal is needed because the ECG signal 

is prone to noise that is caused by several sources like breathing, improper contact of 

electrodes, or body movement. The approach is based on spectrogram analysis to identify 

the noisy parts in the signal. First, it computes the spectrogram of the signal. Next, it 

searches for the regions between successive RR intervals that have more than 50 Hz spectral 

power because all-important cardiac information is stored within 20 Hz. Then, the baseline 

movement is removed using a high pass filter with a cut-off frequency of 0.5 Hz.  

 

Figure 3.3: Signal Before and After Pre-processing 

3.3.2 Features Extraction 

The function of the second stage is to extract the features from the basic ECG features: the 

peaks, the segments, and the intervals. I used the approach used in [10] which extracts 188 

features categorized as follows: morphological features, prior art AF features, HRV 

features, frequency features, statistical features, other abnormalities features, and detecting 

noisy recording features.  

Morphological Features are the features extracted from the peaks P, Q, R, S, and T of the 

ECG waveform. These features are used usually by medical staff for identifying cardiac 

abnormalities. Morphological features include measuring the median, variance, and range 

of different aspects like the corrected QT interval (QTc), QR and QRS widths, slopes of 

QR, RS and ST intervals, depth of the Q and S points concerning R, amplitude difference 

of the TR wave, ratio of the number of P waves to the number of R waves and distance of 

the ST segment crossing from the S point. 
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Prior Art AF Features are features available in the prior art and can identify atrial 

fibrillation events. RR irregularity is an important feature of atrial fibrillation and there are 

several similar features. Some of these features are AF Evidence, Original Count, 

Irregularity Evidence, Pace Count, Density Evidence, Anisotropy Evidence, AF Evidence 

from Lorentz plot of RR intervals. Also, there are features derived from the inter-beat 

intervals using Poincare plots. Other features include approximate and sample entropy-

based features and coefficient of variation of RR and delta RR intervals. 

HRV Features are features related to heart rate variability. HRV features are like the 

number of RR intervals above x, normalized by duration of recording, where x lies between 

20 and 500 ms (pRRx). Other features are the standard deviation of RR intervals (SDRR), 

the standard deviation of RR difference, and the normalized root means square of successive 

differences (RMSSD). Also, the normalized spectral power of the RR interval time series 

within the frequency region of 0- 0.04 Hz, 0.04-0.15 Hz, and 0.15-0.5 Hz are used as 

features. 

Frequency Features are also important in this work, and they are extracted in a process 

where raw time signal is divided into small windows of 2 seconds duration having 50% 

overlapping using hamming window. Then, the Short Time Fourier Transform of each 

window is computed for frequency analysis. The extracted features are mean spectral 

centroid, spectral roll-off, spectral flux, and normalized spectral power between 0-10 Hz 

and 10-20 Hz across all windows in a measurement. 

Statistical Features are features defined and calculated through statistical analysis. These 

features include the mean, median, variance, range, kurtosis, and skewness of RR intervals 

and the probability density estimate (PDE) of the RR intervals and the delta RR intervals. 

Other features in this category are the number of peaks on the PDE of the RR and delta RR 

intervals and the variation of energy in between the RR peaks. Also, the list of statistical 

features includes The Shannon, Tsallis, and Renyi entropy, Linear Predictive Coefficients 

(LPC) of the raw time-series data. 

Other Abnormalities Features are used to distinguish atrial fibrillation from other 

abnormalities. These features are extracted using a sliding window with six peaks per 

window and its average RR interval, maximum of the first difference of some samples in 

the window with a magnitude exceeding 0.1mV, the normalized power spectrum density 

(nPSD) of the window. The heart rate was estimated using an adaptive frequency tracking 
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algorithm to derive features like mean of RR interval, a decrease of HR, maximum SPI 

index, average HR, abnormal HR, and others. 

Detecting Noisy Recording Features are features used to detect noise and motion artifacts 

in the different portions of the signals. This part of the feature extract uses domain-

dependent time and frequency features along with certain statistical features that exploit the 

rise and fall in the morphology of the ECG signal. These features distinguish well between 

the regularities of the clean ECG signal versus the randomness in a noisy waveform.  

3.3.3 Features Selection 

For feature selection, three different methods are used: ReliefF algorithm, Chi-square test, 

and minimum Redundancy Maximum Relevance (mRMR) algorithm. The proposed system 

starts by applying each of the algorithms to the features extracted. The algorithms work to 

give each feature a weight according to its importance in predicting the output and so the 

features are ranked starting with the most important feature ending with the lowest 

importance.  

To rank the features in this work, I used existing functions in MATLAB which are 

relieff, fscmrmr, and fscchi2. relieff function is an implementation for the 

ReliefF algorithm. The function takes the features matrix, target output, and the number of 

nearest neighbors as input. The output of the relieff function is the indices of the ranked 

features and the weight which is in the range -1 and 1. For the mRMR algorithm, fscmrmr 

function was used. The function takes the features matrix and the target output as input. The 

output of the function is the indices of the ranked features and the score of each feature. 

Finally, fscchi2 function was used as an implementation for the Chi-square algorithm. 

The function takes the features matrix and the target output as input. The output of the 

function is the indices of the ranked features and the scores for each feature. The score is -

log(p), and p is a small value of the test that indicates the dependence of the feature with 

the target.  

The next step is to choose the best number of features to be used for each algorithm before 

the training. For this step, I calculated the differences in weights between the ranked 

features. Then, I specified a threshold by intuition and experiment that should not be 

exceeded by the difference. The threshold I choose is the mean of the differences that I 

found to be working for the mRMR algorithm and ReliefF algorithm. For the Chi-square 
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algorithm, some features had an infinite value which indicates higher importance, and so I 

chose to take all the infinite weighted features as the selected features.  

3.3.4 Training Neural Network 

I started with a basic simple network that consists of the input layer, output layer, and 2 

hidden layers. For initializing the neural network, I used the patternnet function to create a 

neural network for classification. The input layer has neurons equal to the number of 

features used. The output layer has four output neurons, one for each of the four classes 

(Normal rhythm, Atrial fibrillation, another rhythm, Noisy signal). I used the soft-max 

transfer function for the output layer and that was kept unchanged across the whole work. I 

started the work with two hidden layers each having 20 neurons and using hyperbolic 

tangent transfer function and rectified linear unit transfer function, respectively. The initial 

neural network architecture is shown in figure 3.4.  

 
Figure 3.4: Neural Network for 113 Input Features 

The network was initialized with the following parameters: 

• Maximum number of epochs to train = 1000 

• Performance goal = 0 

• Maximum time to train in seconds = 300 

• Minimum performance gradient = 0 

• Maximum validation failures = 10 

• Learning rate = 0.01   

• Increment to weight change = 1.2   

• Decrement to weight change = 0.5   

• Initial weight change = 0.07   

• Maximum weight change = 50.0   

• Regularization parameter = 0.1 

• Bias = 0.1 for ReLU layer  
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The number of neurons in each hidden layer was tuned several times until the best results 

were found. I started the training using the Resilient backpropagation algorithm as it works 

best for classification. 

After initializing the neural network, the next step was to train it using the chosen ranked 

features. The objective function used is cross-entropy and the goal was to minimize it. After 

training, the network was tested with the test dataset and the achieved output is compared 

with the target data. The process of initialization, training, and finding the results were 

repeated 30 times for each set of experiments. Then, the average of the results was taken. 

3.3.5 Results Evaluation  

To evaluate the results, I used four metrics: recall, precision, accuracy, and F1 measure. To 

calculate these metrics, four other values should be calculated: true positive, true negative, 

false positive, and false negative. These values determine the correctness of the 

classification. True positive is the correctly classified samples as a positive class while true 

negative is the correctly classified samples as a negative class. On the other hand, false-

positive is the sample that is wrongly classified as positive and false negative is the sample 

that is wrongly classified as negative. The four values together form the confusion matrix 

as shown in table 3.2 [39]. 

Table 3.2: Confusion Matrix 

Data Class 
Predicted by Classifier 

Positive Negative 

Marked by 

Human Expert 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

After calculating these four values of the confusion matrix, I calculate the four metrics that 

evaluate the classification. The recall or sensitivity is a measure of how well the system 

correctly classifies the positive samples and it is calculated by equation (3.1):  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(3.1) 
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Precision is the ability of the system to avoid the wrong predictions and it is calculated using 

equation (3.2): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
                     

(3.2) 

Accuracy is the overall performance of classification. It is a measure that depends highly 

on the number of samples in each class and requires a balanced dataset. Since the dataset 

has an unbalanced number of samples in each class, the accuracy was not a good measure 

to evaluate the system, the reason why the F1 measure was needed. Accuracy is calculated 

using equation (3.3): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

(3.3) 

F1 measure, F score, or simply F measure is the harmonic mean of the recall and the 

precision which solves the problem of evaluating a system with an unbalanced dataset. This 

measure has been used in PhysioNet Challenge 2017 to evaluate the works proposed and it 

is calculated as follows: 

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

(3.4) 

In this work, I wrote a piece of program to first count the four elements of the confusion 

matrix for the four classes, so at the end four confusion matrices were found, one for each 

class. Next, the confusion matrices were used to calculate the four metrics of performance 

for each class. In the end, four performance measures for each of the four classes were 

calculated.  
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CHAPTER 4: RESULTS AND ANALYSIS   

To solve this problem, I followed three different approaches. The first approach is just using 

a deep neural network to detect atrial fibrillation among four classes. As explained before, 

the dataset used is unbalanced, which also makes it a challenge to be solved. To solve the 

challenge of an unbalanced dataset, I followed two more approaches: using a weighted 

neural network and using the method of under-sampling of the dataset.  

4.1 Deep Neural Network 

For the first approach, I used a deep neural network. I started the experiments by first 

selecting the features to be used for classification. Then, I used a deep neural network fed 

with the whole dataset without removing any sample from it to classify the samples into 

four classes. I compared three groups of features chosen by three different algorithms. 

4.1.1 Feature Selection 

First, the three different ranking algorithms: mRMR, Chi-square, and ReliefF algorithm are 

explored. The algorithms gave different rankings for the features. The features have been 

given a weight using the algorithms and accordingly they were ranked staring by the feature 

having the highest weight to be the first down to the lowest at rank 188. The feature ranking 

using the ReliefF algorithm is shown in figure 4.1. 

 

Figure 4.1: Ranking of Features using ReliefF Algorithm 
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After ranking the features, I calculated the difference of the weights and found the mean to 

be at point 10 which means the first 10 ranked features have a weight that satisfies the 

threshold and hence chosen for the next step.  

The selected features using the ReliefF algorithm are as the following: 

1. Bradycardia binary feature 

2. Tachycardia binary feature 

3. Number of RR intervals above 20 ms, normalized by duration of recordingBasic 

ratio of the difference in P location difference to R location difference 

4. P to R ratio  

5. Nonlinear HRV feature of short-range scaling exponent alpha from detrended 

fluctuation analysis 

6. Maximum heart rate in a segment 

7. Irregularity evidence 

8. Areas relative to the total area within the frequency bands 0-2 

9. Areas relative to the total area within the frequency bands 10-150 

The same procedure is repeated with the mRMR algorithm. mRMR algorithm has a 

different behavior where two features have the highest weights and all other features have 

a weight that is comparably very low. The ranking of features using the mRMR algorithm 

is shown in figure 4.2. 

 
Figure 4.2: Ranking of Features using mRMR Algorithm 
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As shown in figure 4.2, the two features have high weights compared with the others and it 

is also proved by the mean of differences. The two features are: 

1. Mean Stepping Increment of Inter Beat Intervals 

2. The mean of RR interval 

The last selection algorithm is Chi-square. The same procedure has been repeated using the 

Chi-square test and the ranking of the features is shown in figure 4.3. As shown in the figure, 

the weights are widely varying. 45 of the features had weights that reach infinity which 

means their effect on the output is very high. Without calculating the differences and taking 

the average, I chose to take the 45 features that have infinity weights. 

 

Figure 4.3: Ranking of Features using Chi-Square Algorithm 

The top ten of the 45 infinity-weighted features using the Chi-Square selection tool are the 

following: 

1. AF Evidence   

2. Number of points in the bin containing the Origin 

3. Irregularity Evidence 

4. Density Evidence 

5. Anisotropy Evidence 

6. Coefficient of variation of RR  

7. Coefficient of variation of ΔRR 

8. Mean Stepping Increment of Inter Beat Intervals 
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9. Dispersion of points around the diagonal line in Poincare Plots 

10. The median of RR interval 

At the end of this step, I had 3 groups of features, one group for each selection algorithm. 2 

features resulted from the mRMR algorithm, 10 features resulted from the ReliefF 

algorithm, and 45 features resulted from the Chi-Square algorithm. All these groups of 

features are used for the next step. 

4.1.2 Tuning Network 

In this step, I used the 3 groups of features to tune the neural network. I started by using 

features selected by the mRMR algorithm, I tried to tune the number of layers and neurons 

to minimize the cross-entropy and find the best network that can classify the data. Since 

there is no rule of thumb to tune the number of layers and neurons, I started with a simple 

2-layer network with 20 neurons in each layer. I trained the network 30 times and took the 

average. Then, I added one more layer and doubled the number of neurons in each layer, 

and trained the network again. I performed 5 experiments as can be seen in table 4.1. I had 

to make a tradeoff between the performance and the elapsed time consumed for training. 

For this reason, I only had 5 layers with 160 neurons. The table shows the average F1 score 

for three classes after 30 iterations, the overall F1 performed on the training dataset, and the 

testing dataset for features extracted using the mRMR algorithm. 

Table 4.1: Results of Deep Neural Network using mRMR Algorithm 

# 

Layers 

# 

Neurons 

per layer 

AF Normal Other Overall 

F1 F1 std F1 std F1 std 

Training 

2 20 0.328 0.291 0.724 0.329 0.543 0.058 0.531 

3 40 0.371 0.287 0.874 0.006 0.585 0.022 0.610 

4 80 0.296 0.301 0.868 0.020 0.554 0.082 0.572 

5 160 0.263 0.286 0.836 0.046 0.408 0.224 0.502 

Testing 

2 20 0.308 0.275 0.715 0.325 0.528 0.043 0.517 

3 40 0.341 0.264 0.857 0.008 0.549 0.024 0.582 

4 80 0.271 0.276 0.853 0.022 0.520 0.082 0.548 

5 160 0.256 0.279 0.820 0.055 0.393 0.216 0.490 
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The same process is performed using features extracted using the ReliefF algorithm. I 

started with a simple 2-layer network and ended up with a 5-layer network with 160 neurons 

in each layer. Table 4.2 shows the resulting F1 score for three classes and the overall F1. 

Table 4.2: Results of Deep Neural Network using ReliefF Algorithm 

# 

Layers 

# 

Neurons 

per layer 

AF Normal Other Overall 

F1 F1 std F1 std F1 std 

Training 

2 20 0.697 0.190 0.890 0.002 0.688 0.013 0.758 

3 40 0.763 0.209 0.905 0.004 0.742 0.024 0.804 

4 80 0.629 0.287 0.886 0.030 0.674 0.126 0.730 

5 160 0.407 0.339 0.868 0.042 0.589 0.201 0.621 

Testing 

2 20 0.671 0.183 0.875 0.004 0.664 0.014 0.737 

3 40 0.650 0.178 0.875 0.003 0.660 0.015 0.728 

4 80 0.571 0.262 0.864 0.032 0.631 0.115 0.689 

5 160 0.360 0.305 0.847 0.045 0.559 0.191 0.589 

The last set of experiments in this section were conducted using the Chi-Square algorithm 

and the 45 features selected by this algorithm. Also, here I started with a simple 2-layers 

network. The results are shown in table 4.3. 

Table 4.3: Results of Deep Neural Network using Chi-Square Algorithm 

# 

Layers 

# 

Neurons 

per layer 

AF Normal Other Overall 

F1 F1 std F1 std F1 std 

Training 

2 20 0.599 0.325 0.881 0.005 0.670 0.025 0.717 

3 40 0.606 0.340 0.880 0.005 0.665 0.034 0.717 

4 80 0.735 0.200 0.880 0.005 0.670 0.026 0.762 

5 160 0.582 0.306 0.853 0.041 0.541 0.224 0.659 

Testing 

2 20 0.571 0.315 0.858 0.005 0.639 0.026 0.689 

3 40 0.584 0.328 0.859 0.003 0.637 0.027 0.693 

4 80 0.711 0.194 0.860 0.005 0.639 0.022 0.737 

5 160 0.554 0.296 0.833 0.046 0.520 0.217 0.636 
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Based on the obtained results using these three feature selection algorithms, it is found that 

the ReliefF and Chi-Square algorithms outperform the mRMR approach. Comparing the 

three algorithms, it can be seen clearly in figure 4.4 that ReliefF and Chi-Square algorithms 

gave better F1 score values than the mRMR algorithm since it is using only 2 features. Yet, 

these numbers are not good enough for the system to identify atrial fibrillation. For this 

reason, I had to go for other approaches.  

  

Figure 4.4: Comparison of Overall F1 using 3 Feature Selection Algorithms 

4.2 Weighted Neural Network 

The dataset I used for this project is unbalanced which made it a challenge in detecting atrial 

fibrillation among the other classes. After comparing multiple state-of-the-art approaches, 

I found that one way to solve the issue is by assigning weights to the classes. Since atrial 

fibrillation is the subject of my study and it is considered a minority class, I gave it a high 

weight compared to the other classes. The weights assigned to the classes are as follows: 

atrial fibrillation = 1, normal rhythm = 0.1, other rhythm = 0.3, and noisy signal = 0. For 

this set of experiments, I used trial and error to tune the parameters and hyperparameters in 

the network. I found that the initial values work well for this step, so I kept them unchanged. 

4.2.1 Tuning Network 

For tuning the number of layers and number of neurons in each layer, I used the same 

approach as in the previous step. I started with a 2-layers network with 20 neurons in each 
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layer. I repeated the experiment 30 times and calculated the average of the F1 score for all 

classes. Then I added one more layer and doubled the number of neurons in each layer. I 

started by using the features extracted using the ReliefF algorithm and the results are shown 

in table 4.4. 

Table 4.4: Results of Weighted Neural Network using ReliefF Algorithm 

# 

Layers 

# 

Neurons 

per 

layer 

AF Normal Other 
Overall 

F1 
F1 std F1 std F1 std 

Training 

2 20 0.689 0.008 0.851 0.003 0.644 0.003 0.728 

3 40 0.762 0.012 0.868 0.003 0.698 0.006 0.776 

4 80 0.710 0.030 0.832 0.157 0.663 0.049 0.735 

5 160 0.626 0.176 0.743 0.297 0.617 0.140 0.662 

Testing 

2 20 0.655 0.010 0.831 0.003 0.622 0.005 0.702 

3 40 0.685 0.014 0.848 0.004 0.655 0.009 0.729 

4 80 0.665 0.026 0.811 0.153 0.629 0.040 0.702 

5 160 0.589 0.162 0.725 0.289 0.588 0.127 0.634 

 

Next, I used the features extracted using the mRMR algorithm. I followed the same 

procedure. The results obtained at this stage are shown in table 4.5. 
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Table 4.5 Results of Weighted Neural Network using mRMR Algorithm 

# 

Layers 

# 

Neurons 

per 

layer 

AF Normal Other 
Overall 

F1 F1 std F1 std F1 std 

Training 

2 20 0.510 0.003 0.824 0.009 0.371 0.019 0.568 

3 40 0.555 0.020 0.794 0.150 0.516 0.035 0.622 

4 80 0.547 0.021 0.796 0.151 0.508 0.030 0.617 

5 160 0.557 0.022 0.761 0.207 0.507 0.044 0.609 

Testing 

2 20 0.579 0.010 0.825 0.008 0.428 0.031 0.611 

3 40 0.604 0.014 0.778 0.147 0.524 0.023 0.635 

4 80 0.602 0.016 0.780 0.148 0.522 0.022 0.635 

5 160 0.610 0.017 0.749 0.204 0.521 0.033 0.626 

 

Finally, I used the features extracted using the Chi-square algorithm to see how they 

perform following the same procedure. The results of the weighted neural network using 

features extracted using the Chi-square algorithm are shown in table 4.6. 

Table 4.6 Results of Weighted Neural Network using Chi-Square Algorithm 

# 

Layers 

# 

Neurons 

per 

layer 

AF Normal Other 
Overall 

F1 F1 std F1 std F1 std 

Training 

2 20 0.715 0.006 0.831 0.003 0.626 0.009 0.724 

3 40 0.732 0.019 0.840 0.010 0.661 0.023 0.744 

4 80 0.712 0.022 0.833 0.014 0.639 0.025 0.728 

5 160 0.669 0.141 0.775 0.211 0.589 0.161 0.678 

Testing 

2 20 0.728 0.011 0.815 0.006 0.618 0.006 0.720 

3 40 0.737 0.011 0.820 0.011 0.649 0.021 0.735 

4 80 0.725 0.017 0.814 0.013 0.629 0.018 0.723 

5 160 0.679 0.136 0.755 0.206 0.575 0.158 0.670 
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At the end of these experiments, I compared the overall F1 score of the three algorithms. 

As can be seen in figure 4.5, the features extracted using the Chi-Square algorithm 

outperform the other features by having a higher F1 score. However, these results are not 

good enough for the network to detect atrial fibrillation. Moreover, I wanted to try the 

second approach and compare how it performs when compared with this approach. 

  

Figure 4.5 Comparison of Overall F1 on Weighted Neural Network 

4.3 Under-sampling Dataset 

The second approach for solving the unbalanced dataset challenge is under-sampling. For 

this approach, I under-sampled the dataset by removing samples from the majority classes 

which are in this case the normal rhythm class and the other rhythms class. The new dataset 

has 846 samples in the normal rhythm class, 805 samples in the other rhythm class, 758 

samples in the atrial fibrillation class, and 279 samples in the noisy signal class. The total 

number of observations in the new under-sampled dataset is 2688 records. In this set of 

experiments, I also used the same parameters and hyperparameters in the network after trial-

and-error tuning. 

4.3.1 Feature Selection 

Before training, I started by feature selection because of the dataset change. I applied the 

three algorithms to select other features based on the new under-sampled dataset. As can be 

seen in figure 4.6, the number of features selected by the mRMR algorithm is now 6 

features.  
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Figure 4.6 Ranking of Features using the mRMR Algorithm from Under-Sampled Dataset 

The selected features using the mRMR algorithm from the under-sampled dataset are 

different from the features selected from the original dataset, and these features are: 

1. Median of absolute difference of heartrate 

2. Sample entropy estimates 

3. Frequency feature   

4. Tsallis Entropy  

5. The basic ratio of the median of difference of R location 

6. Spectral Centroid 

On the other hand, the features selected by the ReliefF algorithm are almost identical with 

a small variation in the number wherefrom the under-sampled dataset I got 11 features. 

Figure 4.7 shows the ranking of the features using the ReliefF algorithm, which looks 

similar to the figure of ranked features on the original dataset. 
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Figure 4.7 Ranking of Features using ReliefF Algorithm from Under-Sampled Dataset 

The features selected using the ReliefF algorithm are the following: 

1. Bradycardia binary feature 

2. The basic ratio of the difference in P location difference to R location difference 

3. P to R ratio  

4. Number of RR intervals above 20 ms, normalized by duration of recording 

5. Standard deviation in R location after removing outliers 

6. Irregularity Evidence 

7. Tachycardia binary feature 

8. Maximum heart rate in the segment 

9. Short-range scaling exponent 

10. AF Evidence 

11. Minimum of RR 

Finally, the features selected using the Chi-Square algorithm are also different than the ones 

selected from the original dataset. From the modified dataset, I found only 6 features having 

infinity weight and those were selected for the next stage. The 6 features can be seen in 

figure 4.8 as the red bars at the start of the graph.  
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Figure 4.8 Ranking of Features using Chi-Square Algorithm from Under-Sampled Dataset 

The 6 selected features are the following: 

1. AF Evidence 

2. Irregularity Evidence 

3. Coefficient of variation of delta RR 

4. Mean Stepping Increment of Inter Beat Intervals 

5. The standard deviation of Empirical Mode Decomposition 

6. Median of absolute difference of heartrate 

4.3.2 Tuning Network 

For tuning the network, I followed the same procedure used in the previous steps. I started 

with a 2-layers network with 20 neurons in each layer. Then I added one more layer and 

doubled the number of neurons in all layers. Starting with the features extracted using the 

ReliefF algorithm, I calculated the F1 score for each class for 30 iterations and took the 

average of 30. The resulted F1 score using the ReliefF algorithm is shown in table 4.7. The 

table shows improvement in the results than the results obtained in the previous stages. 
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Table 4.7: Results of Under-Sampling using ReliefF Algorithm 

# Layers 

# 

Neurons 

per layer 

AF Normal Other 
Overall F1 

F1 std F1 std F1 std 

Training 

2 20 0.873 0.008 0.826 0.004 0.712 0.010 0.803 

3 40 0.889 0.024 0.839 0.015 0.740 0.030 0.823 

4 80 0.794 0.162 0.667 0.307 0.636 0.083 0.699 

5 160 0.779 0.102 0.696 0.267 0.591 0.180 0.689 

Testing 

2 20 0.807 0.014 0.793 0.009 0.665 0.020 0.755 

3 40 0.797 0.016 0.778 0.013 0.644 0.023 0.740 

4 80 0.757 0.151 0.637 0.294 0.610 0.063 0.668 

5 160 0.758 0.106 0.667 0.255 0.576 0.170 0.667 

 

The next algorithm was mRMR. Using the same procedure, I obtained the results shown in 

table 4.8. 

Table 4.8: Results of Under-Sampling using mRMR Algorithm 

# Layers 

# 

Neurons 

per layer 

AF Normal Other 
Overall F1 

F1 std F1 std F1 std 

Training 

2 20 0.707 0.041 0.656 0.032 0.386 0.066 0.583 

3 40 0.751 0.069 0.710 0.055 0.520 0.059 0.660 

4 80 0.720 0.088 0.706 0.078 0.519 0.071 0.649 

5 160 0.603 0.220 0.564 0.269 0.411 0.202 0.526 

Testing 

2 20 0.677 0.053 0.641 0.041 0.338 0.085 0.552 

3 40 0.700 0.065 0.655 0.052 0.456 0.061 0.604 

4 80 0.686 0.071 0.645 0.072 0.452 0.078 0.595 

5 160 0.576 0.190 0.512 0.244 0.357 0.179 0.482 

 

Finally, the results using the features extracted using the Chi-square algorithm are shown in 

table 4.9. 
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Table 4.9: Results of Under-Sampling using Chi-Square Algorithm 

# Layers 
# Neurons 

per layer 

AF Normal Other 
Overall F1 

F1 std F1 std F1 std 

Training 

2 20 0.834 0.009 0.751 0.010 0.556 0.020 0.714 

3 40 0.846 0.013 0.766 0.013 0.601 0.028 0.738 

4 80 0.815 0.080 0.730 0.139 0.531 0.182 0.692 

5 160 0.777 0.147 0.739 0.048 0.547 0.105 0.687 

Testing 

2 20 0.772 0.010 0.744 0.027 0.575 0.039 0.697 

3 40 0.781 0.017 0.747 0.015 0.594 0.028 0.707 

4 80 0.758 0.062 0.708 0.136 0.535 0.183 0.667 

5 160 0.705 0.135 0.735 0.056 0.551 0.107 0.664 

 

Comparing the Overall F1 obtained using the three algorithms shows that the ReliefF 

algorithm outperforms as seen in figure 4.9.  

 

Figure 4.9: Comparison of Overall F1 on Under-sampled Dataset 
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 At the end of this stage, I can conclude that using the ReliefF algorithm yields the best 

features for the network to identify atrial fibrillation. Also, using the under-sampling 

approach helps in improving the network performance and ability to distinguish the 

different classes. Moreover, the highest Overall F1 score was 82.3 % on the training dataset 

and was found using a network of 3 layers and 40 neurons in each layer. For the next step, 

I tune some parameters and hyperparameters to further improve the results.  

4.4 Changing Activation Functions 

For this stage, I have fixed the number of layers and the group of features to be used. For 

the next steps, I used the group of features extracted using the ReliefF algorithm from the 

balanced dataset and a network of 3 layers with 40 neurons in each layer.  At this stage, I 

tried to measure the effect of changing the activation functions used in the 4-layers network. 

Along with changing the activation layer, I tuned the number of neurons and some 

parameters to achieve the best results possible. I used 5 different setups as follows: 

1. ReLU for all layers. 80 neurons per layer, Regularization = 0.9 

2. tanh for all layers. 80 neurons per layer, Regularization = 0.7 

3. tanh for layer 1, ReLU for layers 2 and 3. 40 neurons per layer, Regularization = 0.7 

4. tanh for layers 1 and 3, ReLU for layer 2. 40 neurons per layer, Regularization = 0.7 

5. tanh for layers 1 and 2, ReLU for layer 3. 80 neurons per layer, Regularization = 0.5 

 

The results shown in table 4.10 show that changing the activation function along with tuning 

the number of neurons and the regularization parameter gave good results. In addition, I 

was able to achieve networks that do not overfit the data. From these results, I fixed the 

activation functions as in setup 2 in which uses tanh in all layers and the number of neurons 

in each layer is set to 80 with a regularization parameter of 0.7.  
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Table 4.10: Changing Activation Functions 

Setup 
AF Normal Other 

Overall F1 
F1 std F1 std F1 std 

Training 

1 0.824 0.026 0.806 0.009 0.649 0.028 0.760 

2 0.857 0.015 0.816 0.009 0.694 0.019 0.789 

3 0.823 0.007 0.801 0.004 0.645 0.005 0.756 

4 0.837 0.016 0.809 0.007 0.662 0.018 0.769 

5 0.870 0.014 0.823 0.011 0.712 0.022 0.802 

Testing 

1 0.809 0.018 0.777 0.017 0.625 0.018 0.737 

2 0.818 0.011 0.794 0.007 0.680 0.018 0.764 

3 0.818 0.009 0.793 0.005 0.650 0.012 0.754 

4 0.818 0.007 0.790 0.007 0.651 0.016 0.753 

5 0.814 0.017 0.792 0.009 0.684 0.020 0.763 

 

4.5 Changing Learning Algorithm 

After fixing the numbers in the previous stage, other learning algorithms were used to train 

the network. The algorithms that I used here, and their parameters that I tuned by trial and 

error to get the best results are as follows:  

• SCG: Scaled conjugate gradient backpropagation, with parameters: Marquardt 

adjustment parameter=0.005, Change in weight for second derivative 

approximation=5.0e-5, Parameter for regulating the indefiniteness of the Hessian = 

5.0e-7 

• RP: Resilient backpropagation, with parameters: Learning rate=0.01, Increment to 

weight change=1.2, Decrement to weight change=0.5, Initial weight change=0.07, 

Maximum weight change=50 

• GD: Gradient descent backpropagation, with parameters: Learning rate=1 

• GDA: Gradient descent with adaptive learning rate backpropagation, with parameters: 

Learning rate=1, Ratio to increase learning rate=1.05, Ratio to decrease learning 

rate=0.7, Maximum performance increase=1.04 

• GDM: Gradient descent with momentum, with parameters: Learning rate=5, 

Momentum constant=0.5 



 

 

47 

 

Table 4.11: Results Using Different Learning Algorithms for Training Network  

Learning Algorithm 
AF Normal Other 

Overall F1 
F1 std F1 std F1 std 

Training 

SCG 0.845 0.061 0.780 0.165 0.674 0.122 0.766 

RP 0.859 0.016 0.817 0.009 0.696 0.020 0.791 

GD 0.808 0.220 0.796 0.151 0.688 0.051 0.764 

GDA 0.765 0.209 0.762 0.145 0.639 0.047 0.722 

GDM 0.802 0.218 0.788 0.149 0.674 0.039 0.755 

Testing 

SCG 0.794 0.039 0.739 0.159 0.637 0.109 0.723 

RP 0.816 0.016 0.797 0.007 0.683 0.017 0.765 

GD 0.741 0.202 0.759 0.144 0.629 0.044 0.710 

GDA 0.753 0.206 0.743 0.141 0.635 0.053 0.710 

GDM 0.756 0.206 0.763 0.144 0.652 0.035 0.724 

 

The results shown in table 4.11 show that the obtained results are in the range of 71-76%. 

They mainly differ in the time consumed for training. The highest results achieved when 

using the resilient backpropagation algorithm. The graph in figure 4.10 shows how these 

algorithms compared among themselves.   

 

Figure 4.10: Comparing Learning Algorithms for Training Network 

The best results achieved after all these experiments are shown in table 4.12. The table 

shows the F1 score, precision, recall, and accuracy for atrial fibrillation, normal rhythm, 
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and other rhythm classes. Also, the table shows the overall performance measures achieved 

from the test dataset.  

Table 4.12: Best Achieved Results 

Performance 

Measure 
AF Normal Other Overall 

F1 0.816 0.797 0.683 0.765 

Precision 0.774 0.801 0.722 0.766 

Recall 0.864 0.794 0.650 0.769 

Accuracy 0.885 0.883 0.819 0.862 

 

Figure 4.11 shows how the performance changes to minimize the cross-entropy cost 

function at each epoch until it reaches the optimal value at epoch 116.  

 

Figure 4.11 Changes in Performance with Each Epoch 

These results are obtained using the following parameters and hyperparameters: 

• 3 layers and 80 neurons in each layer 

• Learning algorithm = Resilient backpropagation 

• Maximum number of epochs to train = 1000 

• Performance goal = 0 
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• Maximum time to train in seconds = 300 

• Minimum performance gradient = 0 

• Maximum validation failures = 10 

• Learning rate=0.01  

• Increment to weight change=1.2  

• Decrement to weight change=0.5 

• Initial weight change=0.07 

• Maximum weight change=50 

• Regularization parameter = 0.7 

• Activation function = tanh for all layers 

The network structure can be seen in figure 4.12. The network takes 11 features as input 

and gives 4 outputs representing the four classes. 

 

Figure 4.12: The Best Results Neural Network Structure 

After some more statistical analysis of the results, I calculated the p-value for the results 

obtained from training and testing and found that p < 0.05 which means that the results are 

statistically significant. 

4.6 Comparing with related work 

To validate the developed neural network architecture, a qualitative comparison with the 

most related approaches was conducted. Table 4.13 shows the result from this work 

compared with the result from the works mentioned in the related work section. I compared 

the overall F1 score achieved by the proposed system with the overall F1 score achieved by 

related works. The results show that the work that has been done in this project compared 
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well with the previous works. However, I got slightly lower values because of the lower 

complexity of the system in comparison with the other models. 

The result achieved in this project might not be as good as the results achieved in other 

works. However, in this work, I was merely trying to see how a simple feedforward neural 

network would compare with complex approaches like a convolutional neural network, 

recurrent neural network, and forest tree ensemble. The results of this work proofs that a 

simple feedforward neural network can be a good classifier for such complex problems. The 

complexity of the system proposed in this project is light and fast than others and consumes 

less energy. It can be used for portable devices and real-time applications better than other 

techniques.  

Table 4.13: Comparison of Result with Related Works 

Method F1-Score (%) 

Proposed Neural Network 76.50 

Datta et al. 79.00 

Hong et al. 86.92 

Teijeiro et al. 85.00 

Zabihi et al. 79.43 

Mahajan et al. 76.00 
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CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS 

This thesis describes the details of the work I did to detect atrial fibrillation from ECG 

records. The thesis introduces the work with cardiology basics, description of the problem, 

and related work. A brief literature review about AF features, selection tools, and machine 

learning techniques is also included. The methodology is explained in detail followed by 

the results and analysis. 

In this work, I used an artificial neural network to detect atrial fibrillation from ECG 

records. I extracted 188 features from the ECG records but not all of them were useful. I 

used different algorithms for feature selection and reduction to minimize computation time 

and maximize classification accuracy and these algorithms are the minimum redundancy 

maximum relevance (mRMR) algorithm, Chi-square tests, and ReliefF algorithm. I faced 

the challenge of the unbalanced dataset and tried to solve it by using the weighted neural 

network and by under-sampling the dataset to be almost balanced. Furthermore, I optimized 

the network by tuning the number of features, number of neurons in the hidden layers, 

number of layers, and parameters and hyper-parameters of the network. 

Comparing the results achieved in this work with the most related approaches, I found that 

the developed neural network could achieve an overall F1 score of 76.5%, which is 

comparable with the results achieved by other researchers.  

These experiments have been using a feedforward neural network with scaled conjugate 

gradient backpropagation for training the network. Usually, researchers use convolutional 

neural networks and recurrent neural networks to solve this kind of problem. Others also 

use forest tree and ensemble models, which perform very well on this kind of problem. 

However, I wanted to see how a simple feedforward neural network would perform against 

those approaches. The results show good numbers for a light system which makes it a good 

choice to be used in portable devices and real-time applications.  
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Appendix A: MATLAB Program 

training_net.m 

close all 

clear all 

  

%% Prepare input/output data 

  

% load('3Features-v3.mat') 

load('3Features_balanced-v3.mat') 

  

inR = FeatR'; 

inM = FeatM'; 

inC = FeatC'; 

Y = reference_tab; 

  

labels = {'A' 'N' 'O' '~'}; 

Out = Y; 

Outbi = cell2mat(cellfun(@(x) 

strcmp(x,labels),Out,'UniformOutput',0)); 

Outde = bi2de(Outbi); 

Outde(Outde == 4) = 3; 

Outde(Outde == 8) = 4; 

  

t=Outbi'; 

  

%% Neural Network 

  

accuracy=[]; 

recall=[]; 

precision=[]; 

f1_measure=[]; 

f1_max=[]; 

elapsed_time=[]; 

  

X=inR; 

tic 

k=4; %number of layers 

  

for i=1:30 

    i 

    %% Prepare neural network 

    hiddenLayerSize = [80 80 80 80]; 
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    net = patternnet(hiddenLayerSize); 

     

    net.performFcn = 'crossentropy'; 

    net.performParam.regularization = 0;; 

    net.performParam.normalization = 'standard'; 

     

    net.layers{1}.transferFcn='tansig';%tansig 

    net.layers{2}.transferFcn='poslin'; 

    %     net.layers{3}.transferFcn='poslin'; 

    %     net.layers{4}.transferFcn='poslin'; 

    %     net.layers{5}.transferFcn='poslin'; 

     

    net.input.processFcns = 

{'removeconstantrows','mapminmax'}; 

    net.output.processFcns = 

{'removeconstantrows','mapminmax'}; 

     

    net.divideFcn = 'divideblock';  % Divide data by blocks 

    net.divideMode = 'sample';  % Divide up every sample 

    net.divideParam.trainRatio = 70/100; 

    net.divideParam.valRatio = 15/100; 

    net.divideParam.testRatio = 15/100; 

     

    net.trainFcn = 'trainscg';  % Resilient backpropagation 

    net.plotFcns = 

{'plotperform','plottrainstate','ploterrhist','plotregressio

n', 'plotfit'}; 

     

    net.trainParam.epochs =500; % Maximum number of epochs 

to train. The default value is 1000. 

    net.trainParam.goal =0;%1e-16; %Performance goal. The 

default value is 0. 

    net.trainParam.time =300; %Maximum time to train in 

seconds. The default value is inf. 

    net.trainParam.min_grad =0;%1e-30; %Minimum performance 

gradient. The default value is 1e-6. 

    net.trainParam.max_fail =10; %Maximum validation 

failures. The default value is 6. 

     

    net.trainParam.mu =1e-3; %Marquardt adjustment 

parameter. The default value is 0.005. 
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    net.trainParam.sigma =1e-5; %Determine change in weight 

for second derivative approximation. The default value is 

5.0e-5. 

    net.trainParam.lambda =1e-5; %Parameter for regulating 

the indefiniteness of the Hessian. The default value is 

5.0e-7. 

     

    %     net.trainParam.lr=0.05;   %0.01 Learning rate 

    %     net.trainParam.delt_inc=1.5;  %1.2    Increment to 

weight change 

    %     net.trainParam.delt_dec=0.5;  %0.5     Decrement 

to weight change 

    %     net.trainParam.delta0=0.05;   %0.07   Initial 

weight change 

    %     net.trainParam.deltamax=100;  %50.0   Maximum 

weight change 

     

    %% Train neural network 

    %     

ew=(t==[1;0;0;0])*1+(t==[0;1;0;0])*0.1+(t==[0;0;1;0])*0.3+(t

==[0;0;0;1])*0; %setting weight 

    [net,tr] = train(net,X,t); 

    %     [net,tr] = train(net,X,t,[],[],ew); %training with 

weight 

     

    %% Test the Network 

    y = net(X); 

    e = gsubtract(t,y); 

    performance(i) = perform(net,t,y); 

    %     performance(i) = perform(net,t,y,ew); %performance 

with weight 

    tind = vec2ind(t); 

    yind = vec2ind(y); 

    percentErrors(i) = sum(tind ~= yind)/numel(tind); 

     

    %% Recalculate Training, Validation and Test Performance 

     

    trainPerformance = 

perform(net,t(:,tr.trainInd),y(:,tr.trainInd)); 

    valPerformance = 

perform(net,t(:,tr.valInd),y(:,tr.valInd)); 

    testPerformance = 

perform(net,t(:,tr.testInd),y(:,tr.testInd)); 
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    %% Performance metrics 

    o = double(y>=max(y)); 

     

    tt=t(:,tr.testInd);     % test target 

    ot=o(:,tr.testInd);     % test output 

     

    for j=1:4 

        tp=length(find(tt(j,:)==1 & ot(j,:)==1)); %true 

positive 

        fn=length(find(tt(j,:)==1 & ot(j,:)==0)); %false 

negative 

        tn=length(find(tt(j,:)==0 & ot(j,:)==0)); %true 

negative 

        fp=length(find(tt(j,:)==0 & ot(j,:)==1)); %false 

positive 

         

        acc(i,j)=(tp+tn)/(tp+tn+fp+fn); % accuracy 

        rec(i,j)=tp/(tp+fn); % recall 

        prc(i,j)=tp/(tp+fp); % precision 

        f1(i,j)=(2*rec(i,j)*prc(i,j))/(rec(i,j)+prc(i,j)); % 

F measure 

         

        Ftrain(i,j)=(2*sum(t(j,tr.trainInd)==1 & 

o(j,tr.trainInd)==1))/( sum(t(j,tr.trainInd)==1)+ 

sum(o(j,tr.trainInd)==1)); % F measure of training 

        Ftest(i,j)=(2*sum(t(j,tr.testInd)==1 & 

o(j,tr.testInd)==1))/( sum(t(j,tr.testInd)==1)+ 

sum(o(j,tr.testInd)==1)); % F measure of testing 

    end 

    clear net 

end 

prc=fillmissing(prc,'constant',0); 

f1=fillmissing(f1,'constant',0); 

  

et=toc 

elapsed_time=[elapsed_time;et]; 

  

accuracy=[accuracy;k mean(acc);k std(acc)]; 

recall=[recall;k mean(rec);k std(rec)]; 

precision=[precision;k mean(prc);k std(prc)]; 

f1_measure=[f1_measure;k mean(f1);k std(f1)]; 

f1_max=[f1_max;k max(f1)]; 
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perf=[k mean(performance),k mean(percentErrors);k 

std(performance),k std(percentErrors)]; 

Ftot=[k mean(Ftrain),k mean(Ftest); k std(Ftrain),k 

std(Ftest)]; 

  

%% Save results to xl file 

filename='step2.xlsx'; 

range='B33'; %3,15,27,39 %3,5,7,9 

writematrix(accuracy,filename,'Sheet','Accuracy','Range',ran

ge) 

writematrix(recall,filename,'Sheet','Recall','Range',range) 

writematrix(precision,filename,'Sheet','Precision','Range',r

ange) 

writematrix(f1_measure,filename,'Sheet','F1-

Measure','Range',range) 

writematrix(perf,filename,'Sheet','Performance','Range',rang

e) 

writematrix(Ftot,filename,'Sheet','F1 total','Range',range) 

writematrix(elapsed_time,filename,'Sheet','Elapsed 

Time','Range',range) 
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rearrange_dataset.m 

clear all 

  

%% load data 

load('myFeats-v3.mat') 

  

%% under-sample Normal class by 6 

  

idxN = find(ismember(reference_tab,'N')); 

idxNN = []; 

for i=1:6:size(idxN) 

    idxNN = [idxNN;idxN(i)]; 

end 

features(idxN(ismember(idxN,idxNN)==0),:)=[]; 

reference_tab(idxN(ismember(idxN,idxNN)==0))=[]; 

  

%% under-sample Others class by 3 

  

idxO=find(ismember(reference_tab,'O')); 

idxOO = []; 

for i=1:3:size(idxO) 

    idxOO = [idxOO;idxO(i)]; 

end 

features(idxO(ismember(idxO,idxOO)==0),:)=[]; 

reference_tab(idxO(ismember(idxO,idxOO)==0))=[]; 

  

%% Feature Selection 

  

A=features; 

features=features{:,:}; 

  

in = features; 

Y = reference_tab; 

  

%% Rank features by importance %ReliefF 

[idxR,scoreR] = relieff(in,Y,10); 

figure(1);bar(scoreR(idxR)) 

diffR=-diff(scoreR(idxR)); 

new_idxR=idxR(1:min(find(diffR<mean(diffR)))-1); 

FeatR=in(:,new_idxR); 

namesR=A(1,new_idxR).Properties.VariableNames; 
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%% mRMR 

[idxM,scoreM] = fscmrmr(in,Y); 

figure(2);bar(scoreM(idxM)) 

diffM=-diff(scoreM(idxM)); 

new_idxM=idxM(1:min(find(diffM<=mean(diffM)))-1); 

FeatM=in(:,new_idxM); 

namesM=A(1,new_idxM).Properties.VariableNames; 

  

%% Chi2 

[idxC,scoreC] = fscchi2(in,Y); 

idxInf = find(isinf(scoreC)); 

figure(3);bar(scoreC(idxC)) 

hold on 

bar(scoreC(idxC(length(idxInf)+1))*ones(length(idxInf),1)) 

legend('Finite Scores','Infinite Scores') 

hold off 

new_idxC=idxInf; 

FeatC=in(:,new_idxC); 

namesC=A(1,new_idxC).Properties.VariableNames; 

  

%% Save data to xl file 

save('3Features_balanced1-

v3.mat','FeatR','FeatM','FeatC','reference_tab'); 
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features_selection.m 

close all 

clear all 

  

%% prepare data  

load('myFeats-v3.mat')  

A=features; 

features=features{:,:};  

in = features; 

Y = reference_tab; 

   

%% Rank features by importance %ReliefF 

[idxR,scoreR] = relieff(in,Y,10); 

figure(1);bar(scoreR(idxR)) 

diffR=-diff(scoreR(idxR)); 

new_idxR=idxR(1:min(find(diffR<mean(diffR)))-1); 

FeatR=in(:,new_idxR); 

namesR=A(1,new_idxR).Properties.VariableNames; 

  

%% Rank features by importance %mRMR 

[idxM,scoreM] = fscmrmr(in,Y); 

figure(2);bar(scoreM(idxM)) 

diffM=-diff(scoreM(idxM)); 

new_idxM=idxM(1:min(find(diffM<=mean(diffM)))-1); 

FeatM=in(:,new_idxM); 

namesM=A(1,new_idxM).Properties.VariableNames; 

  

%% Rank features by importance %Chi2 

[idxC,scoreC] = fscchi2(in,Y); 

idxInf = find(isinf(scoreC)); 

figure(3);bar(scoreC(idxC)) 

hold on 

bar(scoreC(idxC(length(idxInf)+1))*ones(length(idxInf),1)) 

legend('Finite Scores','Infinite Scores') 

hold off 

new_idxC=idxInf; 

FeatC=in(:,new_idxC); 

namesC=A(1,new_idxC).Properties.VariableNames; 

  

%% Save data to xl file 

save('3Features-

v3.mat','FeatR','FeatM','FeatC','reference_tab'); 


