
Automatic Atrial Fibrillation Detection using Artificial

Neural Network

Ahood Mansoor Al Darmaki

A thesis submitted in partial fulfillment

of the requirements for the degree

Master of Science

in

Electrical and Computer Engineering

Department of Electrical and Computer Engineering

College of Engineering

Sultan Qaboos University

Sultanate of Oman

2021

©

i

Automatic Atrial Fibrillation Detection using Artificial Neural Network

Abstract

Atrial fibrillation is one of the serious heart diseases in which the heartbeats are

irregular. Patients with this disease usually have shortness of breath, dizziness, and

tiredness. Atrial fibrillation is considered a serious disease because the heart may

develop clots of blood that might travel to the brain and cause a stroke, which may

lead to death.

Since it is heart disease, atrial fibrillation can be detected by observing the

electrocardiograph (ECG) of the patient. The ECG is usually characterized by its

peaks, intervals, and segments, and using the ECG, many features have been extracted

to detect atrial fibrillation. Atrial fibrillation can be identified by observing the heart

rate variability and the atrial activity from the ECG.

In this work, I used an open-source feature extraction program that uses a modified

version of the Pan-Tompkins algorithm and several other open-source algorithms to

detect QRS complex and R peaks. Using the extracted features, I built an artificial

neural network for automatic atrial fibrillation detection. Moreover, I measured the

effect of using feature selection algorithms in enhancing the classification results.

Also, I was able to overcome the challenge of the unbalanced dataset by using the

weighted neural network and under-sampling the dataset to be almost balanced.

Based on the achieved results, and using feature selection tools, the performance of

the classification could be improved. The obtained performance results are compared

with other powerful tools. In this work and using an artificial neural network, I got an

overall F1 score of 76.5% on the test dataset which is in the range of results achieved

by other researchers. The complexity of the proposed system is light and fast which

makes it a good choice to be used in portable devices and real-time applications.

ii

 ائي عن الرجفان الأذيني باستخدام الشبكة العصبية الاصطناعيةالكشف التلق

لخلاصةا

الأذينيا يعاني لرجفان ما عادة منتظمة. القلب غير فيها ضربات تكون التي الخطيرة القلب أمراض أحد هو

المرضى المصابون بهذا المرض من ضيق في التنفس ودوخة وإرهاق. يعتبر الرجفان الأذيني مرضًا خطيرًا لأن

 .فاةالقلب قد يصاب بجلطات دموية قد تنتقل إلى المخ وتسبب سكتة دماغية قد تؤدي إلى الو

القلب للمريض. إشارة تخطيط، يمكن اكتشاف الرجفان الأذيني من خلال مراقبة يصيب القلبنظرًا لأنه مرض

القلب، تم استخراج العديد إشارة تخطيط، وباستخدام بقممها وفتراتها وشرائحهاعادةً تخطيط القلب تتميز إشارة

التعرف على الرجفان الأذيني. يمكن للكشف عن الميزات الرجفان الأذيني من خلال ملاحظة تقلب معدل من

 .القلب إشارة تخطيطضربات القلب والنشاط الأذيني من

العمل، استخدمت برنامج المصدرفي هذا يستخدم نسخة معدلة من الرجفان الأذيني اتستخراج ميزلا مفتوح

 وقمم QRS شاف مجمعوالعديد من الخوارزميات مفتوحة المصدر الأخرى لاكت Pan-Tompkins خوارزمية

R. الميزات الأذيني. المستخرجة،باستخدام الرجفان التلقائي عن للكشف ببناء شبكة عصبية اصطناعية قمت

تمكنت أيضًا، .في تحسين نتائج التصنيف اتتأثير استخدام خوارزميات اختيار الميز بقياس قمت ذلك،علاوة على

مجموعة البيانات غير المتوازنة باستخدام الشبكة العصبية الموزونة وأخذ التغلب على التحدي المتمثل في من

 عينات أقل من مجموعة البيانات لتكون متوازنة تقريبًا.

 الأداء نتائج تمت مقارنة .باستخدام أدوات اختيار الميزات يمكن تحسين أداء التصنيف بناءً على النتائج المحققة،

خرى. في هذا العمل وباستخدام شبكة عصبية اصطناعية، حصلت الأقوية الدوات الأ التي تم الحصول عليها مع

٪ في مجموعة بيانات الاختبار والتي تقع ضمن نطاق النتائج التي حققها باحثون 76.5بنسبة F1على مجموع

المحمولة وتطبيقات يعد تعقيد النظام المقترح خفيفًا وسريعًا مما يجعله خيارًا جيداً لاستخدامه في الأجهزة آخرون.

 الوقت الفعلي.

iii

Table of Contents

CHAPTER 1: INTRODUCTION .. 1

1.1 Cardiology Basics .. 1

1.1.1 Heart ... 1

1.1.2 Electrocardiogram .. 1

1.1.3 Atrial Fibrillation ... 3

1.2 Problem Description .. 4

1.3 Related Work ... 5

1.3.1 Beyond CinC 2017 ... 9

1.3.2 Other works .. 11

1.4 Thesis Outline .. 13

CHAPTER 2: LITERATURE REVIEW ... 14

2.1 Signal Processing .. 14

2.1.1 Atrial Fibrillation Features ... 14

2.1.2 Other Abnormalities ... 16

2.2 Features Selection .. 16

2.2.1 Minimum Redundancy Maximum Relevance (mRMR) Algorithm 17

2.2.2 Chi-Square (χ2) Test ... 17

2.2.3 ReliefF Algorithm .. 17

2.3 Artificial Neural Network ... 18

2.3.1 Neural Network Optimization .. 19

2.3.2 Activation Functions .. 21

CHAPTER 3: Atrial Fibrillation Automatic Detection .. 23

3.1 Tools .. 23

3.2 Data ... 23

3.3 Methodology ... 24

3.3.1 Pre-processing .. 25

iv

3.3.2 Features Extraction... 25

3.3.3 Features Selection .. 27

3.3.4 Training Neural Network ... 28

3.3.5 Results Evaluation .. 29

CHAPTER 4: RESULTS AND ANALYSIS ... 31

4.1 Deep Neural Network .. 31

4.1.1 Feature Selection .. 31

4.1.2 Tuning Network ... 34

4.2 Weighted Neural Network ... 36

4.2.1 Tuning Network ... 36

4.3 Under-sampling Dataset .. 39

4.3.1 Feature Selection .. 39

4.3.2 Tuning Network ... 42

4.4 Changing Activation Functions ... 45

4.5 Changing Learning Algorithm .. 46

4.6 Comparing with related work .. 49

CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS 51

REFERENCES ... 52

v

List of Figures

Figure 1.1: Heart Illustration [3] .. 1

Figure 1.2: ECG Morphology [5]... 3

Figure 1.3: Normal Sinus Rhythm vs Atrial Fibrillation [8] .. 4

Figure 2.1: RR Interval [23] ... 15

Figure 2.2: Example of Neural Network [31] .. 19

Figure 2.3: Hyperbolic Tangent Transfer Function [36] .. 22

Figure 2.4: Positive Linear Transfer Function [37] ... 22

Figure 3.1: The ECG Signal of the Four Classes [38] ... 23

Figure 3.2: The Proposed System Block Diagram ... 24

Figure 3.3: Signal Before and After Pre-processing .. 25

Figure 3.4: Neural Network for 113 Input Features ... 28

Figure 4.1: Ranking of Features using ReliefF Algorithm .. 31

Figure 4.2: Ranking of Features using mRMR Algorithm .. 32

Figure 4.3: Ranking of Features using Chi-Square Algorithm 33

Figure 4.4: Comparison of Overall F1 using 3 Feature Selection Algorithms 36

Figure 4.5 Comparison of Overall F1 on Weighted Neural Network 39

Figure 4.6 Ranking of Features using the mRMR Algorithm from Under-Sampled

Dataset .. 40

Figure 4.7 Ranking of Features using ReliefF Algorithm from Under-Sampled Dataset

 .. 41

Figure 4.8 Ranking of Features using Chi-Square Algorithm from Under-Sampled

Dataset .. 42

Figure 4.9: Comparison of Overall F1 on Under-sampled Dataset 44

Figure 4.10: Comparing Learning Algorithms for Training Network 47

Figure 4.11 Changes in Performance with Each Epoch ... 48

Figure 4.12: The Best Results Neural Network Structure.. 49

vi

List of Tables

Table 1.1: ECG Characteristics and Their Normal Durations 2

Table 1.2: Data Profile of the Training Set .. 5

Table 1.3: Performance of Datta et al Proposed System .. 6

Table 1.4: Proposed System Performance of Hong et al. .. 7

Table 1.5: Proposed System Performance of Teijeiro et Al... 8

Table 1.6: Proposed System Performance of Zabihi et al. ... 9

Table 1.7: Proposed System Performance of P. Cao et Al... 10

Table 1.8: Performance of X. C. Cao et. al Proposed System 11

Table 1.9: Proposed System Performance of Wang et Al. ... 12

Table 1.10 Performance of Faust et. al Proposed System .. 12

Table 3.1: Data Division .. 24

Table 3.2: Confusion Matrix .. 29

Table 4.1: Results of Deep Neural Network using mRMR Algorithm 34

Table 4.2: Results of Deep Neural Network using ReliefF Algorithm 35

Table 4.3: Results of Deep Neural Network using Chi-Square Algorithm................ 35

Table 4.4: Results of Weighted Neural Network using ReliefF Algorithm 37

Table 4.5 Results of Weighted Neural Network using mRMR Algorithm 38

Table 4.6 Results of Weighted Neural Network using Chi-Square Algorithm.......... 38

Table 4.7: Results of Under-Sampling using ReliefF Algorithm 43

Table 4.8: Results of Under-Sampling using mRMR Algorithm 43

Table 4.9: Results of Under-Sampling using Chi-Square Algorithm 44

Table 4.10: Changing Activation Functions .. 46

Table 4.11: Results Using Different Learning Algorithms for Training Network 47

Table 4.12: Best Achieved Results .. 48

Table 4.13: Comparison of Result with Related Works .. 50

vii

List of Abbreviations

ADI Amplitude Dispersion Index

AF Atrial Fibrillation

CCI Cross-Correlation Index

CNN Convolutional Neural Network

CoSEn Coefficient of Sample Entropy

ECG Electrocardiograph

KFD Katz Fractal Dimension

MAWSD Mean of Absolute Weighted Successive Difference

mRMR Minimum Redundancy Maximum Relevance

N Normal

O Other

RMSSD Root Mean Square of Successive Differences

TPC Turning Point Count

WI Warping Index

1

CHAPTER 1: INTRODUCTION

1.1 Cardiology Basics

1.1.1 Heart

The human heart is a muscular organ. It works to pump oxygenated blood to the rest of the

body at each heartbeat. The heart consists of four chambers: two small upper atria and two

large lower ventricles. One important part of the work of the heart is the sinoatrial node

(sinus node) which is a group of cells that act as a natural pacemaker of the heart [1]. The

normal heartbeat happens when the sinus node generates an electrical signal that travels

through the heart causing the heart muscles to contract [2].

Figure 1.1: Heart Illustration [3]

1.1.2 Electrocardiogram

Electrocardiogram (ECG) is a graph that represents the measure of the electrical activity of

the heart. Whenever the sinus node sends an electrical pulse, the ECG shows one wave that

corresponds to one heartbeat. This wave represents the electrical signal traveling through

the atria and ventricles, and it consists of three main parts, which are the P wave, the QRS

complex, and the T wave. As shown in figure 1.2, the ECG signal's main characteristics are

2

the peaks (P, Q, R, S, and T), intervals (PR, RR, QRS, and QT), and segments (PR and ST).

These characteristics have a normal amplitude or duration as can be seen in table 1.1[4].

Table 1.1: ECG Characteristics and Their Normal Durations

Feature Description Duration

RR

interval
The interval between the R wave and the next R wave 0.6-1.2 s

P wave First short upward movement of the ECG tracing 80ms

PR

interval

Measured from the beginning of the P wave to the

beginning of the QRS complex
120-200ms

QRS

complex

Normally begins with a downward deflection Q, a larger

upwards deflection R, and ends with a downward S wave
80-120ms

PR

segment
Connects the P wave and the QRS complex 50-120ms

ST

segment
Connects the QRS complex and the T wave 80-120ms

T wave Normally a modest upward waveform 160ms

QT

interval

Measured from the beginning of the QRS complex to the

end of the T wave
420ms

In a normal person, the P wave is formed by the depolarization of the atria in which the

electrical signal travels through the atria causing them to contract. Next, the QRS complex

is formed by the depolarization of the ventricles and it is considered the reference point for

signal analysis. The T wave is formed by repolarization in which the heart goes to its resting

state [5].

3

Figure 1.2: ECG Morphology [5]

1.1.3 Atrial Fibrillation

Atrial Fibrillation (AF or AFib) is an abnormal heart activity. The normal heart beats 60 –

100 beats per minute at rest while in atrial fibrillation patients the heart beats rapidly

irregular beats that may vary between 140-180 beats per minute. In atrial fibrillation, the

atria produce random electrical signals that override the sinus node signal. These signals

cause the atria to quiver and contract at a high rate of 400 times per minute. Some of these

impulses affect the ventricles and cause them to contract at a varying force but with a lower

rate of 140 -180 times per minute [6].

The variation of contracting rate between the atria and the ventricles causes the ventricles

to fill partially and pump blood to the lung with insufficient amounts. This causes the patient

to feel dizziness and shortness of breath. Other symptoms include chest pain, heart

palpitation, and low blood pressure [7].

4

Figure 1.3: Normal Sinus Rhythm vs Atrial Fibrillation [8]

1.2 Problem Description

Atrial Fibrillation is considered a serious heart disease that can result in a heart attack or a

stroke when it is not detected in the early stages. Because of this abnormality, the heart can

develop small clots of blood that might travel to the brain, which causes a stroke, which

may lead to death. The risk of developing a blood clot and having a stroke depends on

various factors and the doctor can assess this. Atrial fibrillation can be diagnosed with

several tests, which include the measurement of heart rate variability. Early detection of

atrial fibrillation makes it possible to save patients' life.

The heart rate variability is the variation of the heartbeat intervals that can be detected from

the ECG. The ECG has many features that can identify different rhythms of the heartbeat,

which include normal sinus rhythm and abnormal arrhythmia. Many works have been done

in this field to find the features of ECG that help in detecting atrial fibrillation.

In this work, I extracted atrial fibrillation features from the ECG records after preprocessing

and removing useless information. I compared three algorithms for feature selection. I

applied an artificial neural network for classifying the ECG records into four normal classes,

atrial fibrillation, other, and noisy records.

5

1.3 Related Work

The PhysioNet/Computing in Cardiology (CinC) Challenge 2017 is a contest that invited

researchers to solve this problem in which the competitors should differentiate atrial

fibrillation from normal, noisy, and other rhythms. The challenge provides short-term ECG

recordings (from 9-61 s) performed by patients using AliveCor handheld devices. The

dataset is divided into 8,528 in the public training set and 3,658 in the private hidden test

set. The number of recordings in each class and the time length of recordings are shown in

table 1.2. The data are stored as 300 Hz, 16-bit files with bandwidth 0.5-40 Hz and a ± 5

mV dynamic range. The dataset has 4 classes which are normal sinus rhythm, atrial

fibrillation, other rhythms, and noise. Another rhythm is all non-AF abnormal rhythms and

noisy is the signal that is too noisy to be classified. 75 teams entered the challenge and 4 of

them won with an equal score [9]. Here I will highlight the four best score works.

Table 1.2: Data Profile of the Training Set

Type # Recording

Time length (s)

Mean SD Max Median Min

Normal 5154 31.9 10.0 61.0 30 9.0

AF 771 31.6 12.5 60 30 10.0

Other rhythm 2557 34.1 11.8 60.9 30 9.1

Noisy 46 27.1 9.0 60 30 10.2

Total 8528 32.5 10.9 61.0 30 9.0

The first work that won the challenge is proposed by Datta et al. [10]. They proposed a two-

layer binary cascaded approach. They extracted more than 150 features categorized into:

morphological, prior art AF, HRV, frequency, statistical, other abnormalities, and detecting

noisy recording features. They used feature selection to improve the classification using

6

statistical feature selection tools like Maximal Information Coefficient (MIC) and minimum

Redundancy Maximum Relevance (mRMR). For classification, they used adaptive boosting

in two-layer cascaded classifiers. In the first layer, the signals are classified into AF + noisy

or normal + other. In the second layer, there are two classifiers for each of the two classes

from the previous step and they will give the final classification. For each of the three

classifiers, two parameters of the ensemble classifiers which are the number of learning

cycles and learning rate are optimized using the Bayesian optimization function. Feature

extraction is also applied before each classifier in the two layers but there is a different set

for each classifier. The performance of their work is shown in table 1.3. This table shows

how their proposed system performs on the training dataset and the hidden test set. The

values in the table are the F score of normal, AF, other, and noisy, respectively. The

limitation to this work is the unavailability of actual disease information corresponding to

each recording in the other rhythm class which makes the classification task more

challenging to identify the proper features, thus reducing the classification accuracy.

Table 1.3: Performance of Datta et al Proposed System

Data set Fnormal FAF Fother Fnoisy

Complete training data 0.99 0.94 0.98 0.96

Complete test data 0.92 0.82 0.75 0.83

Another work that won the challenge has been proposed by Hong et al [11]. They propose

an ensemble classifier using three different kinds of features, which are Expert features,

Deep features, and Center wave features. The total number of features extracted is over 600

features. The expert features are categorized into statistical features, signal-processing

features, and medical features. The deep features are the last hidden layer extracted from

the deep neural network as features. Two different deep feature extractors have been used.

One deep feature extractor is based on a deep residual convolution neural network and it is

trained using expanded data. The second deep feature extractor is based on a recurrent

neural network and it is trained using center wave data. The center wave features are

extracted from the center wave, which is the most representative wave among the signal.

They extract the three types of features and combine them to be trained using individual

7

classifiers. The individual classifiers used are extreme gradient boosting of decision trees

(XGBoost). The classifiers are assembled by averaging the predicted probabilities. The final

system ensemble five XGBoost, and each XGBoost has 3000 trees with max depth = 9, min

child weight = 3. The performance of their proposed system is shown in table 1.4. The table

shows the F score for the four classes, normal, AF, other, and noisy. The F score calculated

using Expert Features, Expert and Centerwave Features, and Expert, Centerwave, and Deep

Features. In addition, the overall F score is shown. Moreover, they have experimented with

the system in three different scenarios, the first using only expert features, the second using

expert and center wave features, and the third using all three types of features. The

researchers in this work state that this system could detect more classes of heart diseases if

providing more data.

Table 1.4: Proposed System Performance of Hong et al.

Features Fnormal FAF Fother Fnoisy F1

E 0.9059 0.7908 0.7543 0.6574 0.7771

E + C 0.9086 0.7899 0.7622 0.6603 0.7803

E + C + D 0.9204 0.8692 0.8068 0.8156 0.8530

Teijeiro et al. [12] proposed the third work that won the challenge. The proposed work is

based on features provided by abductive interpretation of the signal using the Construe

algorithm. In their work, they extracted two types of features, which are global features and

pre-beat features. The global features are categorized into rhythm features, morphological

features, and signal quality features. The global features, which are 79 features in total,

summarize the information provided by the Construe algorithm for adductive interpretation.

Pre-beat features are extracted after the global features to classify the records that cannot be

classified globally, and these features are global but disaggregated to the heartbeat scope.

After the feature extraction, global classification is applied to the global features and

sequence classification is applied to the pre-beat features. For the global classification, they

used Extreme Tree Gradient Boosting (XGBoost) algorithm. They used exhaustive grid

search and 8-fold cross-validation for tuning the hyperparameters. The final optimized

classifier was with the following parameters: Maximum tree depth: 6, Learning rate: 0.2,

8

Gamma: 1.0, Column subsample by tree: 0.9, Min. child weight: 20, Subsample: 0.8, and

Number of boosting rounds: 60. The sequence classification method used is based on

Recurrent Neural Network (RNN), specifically; they used Long Short-Term Memory

networks (LSTM). The classifier uses 4 LSTMs, the first one preprocesses the sequence of

transformed features and returns a new sequence, which is subsequently used by the other

LSTMs. All the LSTMs used has 128 units. The two classifiers are stacked using Linear

Discriminant Analysis (LDA) classifier and the final classification is the output of the stack

classifier. The performance of their proposed system is shown in table 1.5. The table shows

the F score of the system when using only either one of the classifiers and when using them

both stacked using 8-fold cross-validation.

Table 1.5: Proposed System Performance of Teijeiro et Al.

Method

Fold Number

Mean

0 1 2 3 4 5 6 7

XGBoost 0.84 0.84 0.85 0.85 0.82 0.80 0.82 0.82 0.83

RNN 0.82 0.81 0.84 0.83 0.86 0.83 0.83 0.83 0.83

LDA-stacker 0.85 0.84 0.86 0.86 0.85 0.83 0.84 0.85 0.85

Teijeiro et al. [12] proposed the third work that won the challenge. The proposed work is

based on features provided by the abductive interpretation of the signal using the Construe

algorithm. In their work, they extracted two types of features, which are global features and

pre-beat features. The global features are categorized into rhythm features, morphological

features, and signal quality features. The global features, the fourth work that won the

challenge was proposed by Zabihi et. al. [13]. In their work, they manually extracted 491

features, which are a combination of features extracted from the signal, and features

extracted from the prediction of the base-level classifiers. These features are ranked using

a random forest classifier based on their importance, which is evaluated based on the

reduction of entropy. The 150 highest ranked features are selected and listed as base-level

time domain and morphological features, base-level frequency domain features, base-level

time-frequency domain features, base-level nonlinear (phase space) features, and meta-level

9

features. For classification, they used an external random forest classifier using 500 decision

trees and a random selection of features at each node creation. Then, they used bagging to

train each decision tree, and 30 features are randomly selected for each node. The

performance of their proposed classifier is shown in table 1.6. The table shows the F score

of the four classes and the mean F score when applied to the training dataset and the test

dataset.

Table 1.6: Proposed System Performance of Zabihi et al.

Evaluation

metrics
Fnormal FAF Fother Fnoisy F1

Training set

(%)
90.49±0.96 79.43±4.52 75.64±3.11 61.11±7.53 81.85±2.57

Testing set

(%)
90.87 83.51 73.41 50.42 83

1.3.1 Beyond CinC 2017

After the challenge, many researchers have tackled the problem using the same dataset used

in the challenge to improve the results. P. Cao et al. [14] presents one of these works. In

their work, they focused on balancing the dataset to get better results. They propose a data

augmentation strategy for balancing the data. The strategy starts by detecting the QRS

complex using the Pan-Tompkins algorithm and assigning the beginning of each complex

to then take the segment between the first and last assigned starting point as a selected

sequence. Then, the selected sequence is duplicated and concatenated to the duplicate to be

resampled using a sliding window. For comparison, they used two different methods for

data augmentation, which are window slicing and permutation. After preparing the balanced

dataset, they used a recurrent neural network for classification. They used a 2-layer LSTM

network with cross-entropy as a loss function. For optimizing the network, they used Adam

and stochastic gradient descent optimizers. The stochastic gradient descent replaces the

Adam optimizer for a better result after it fails to decrease the loss for 5 epochs. They use

10-fold cross-validation to evaluate the performance. The performance of the system while

using the data augmentation and without using it is shown in table 1.7. The table shows the

F score for only three classes while they ignored the noisy signal class. The limitation of

this system is that it may disrupt the patterns of RR interval of the raw signal thus generate

10

new samples with non-physiological rhythms. In addition, the data augmentation was not

tested in other classical deep neural network architectures, such as the convolutional neural

network.

Table 1.7: Proposed System Performance of P. Cao et Al.

Evaluation

metrics
Fnormal FAF Fother F1

With Data

Augmentation
0.860±0.028 0.754±0.029 0.677±0.035 0.764±0.028

Without Data

Augmentation
0.380±0.075 0.308±0.120 0.380±0.066 0.356±0.046

X. C. Cao et al. [15] propose another work that also tackled the same problem using the

same dataset. Like the previous work, their concern was also the unbalanced dataset. To

solve this issue, they re-segmented the ECG records into short samples of 9 seconds. They

intercept short samples depending on the length of the signal. For normal rhythm and other

abnormalities classes, they intercept from the middle without overlapping. For atrial

fibrillation and noisy classes, they intercept more segments with overlapping since they

have few numbers of samples. After this process, they end up with 19188 samples. After

balancing the dataset, they apply derived wavelet frames for signal decomposition to further

prepare the data. This work proposes two convolutional neural network models, which are

fast down-sampling residual convolutional neural network (FDResNet) and multi-scale

decomposition, enhanced fast down-sampling residual convolutional neural network

(MSResNet). FDResNet model is composed of three main parts, which are a fast down-

sampling module, a residual convolution module, and a classification module. The fast

down-sampling module is mainly two convolutional layers. The residual convolutional

module is three modules consisting of convolutional layers followed by a residual short

circuit. The classification module consists of 1 fatten layer, 2 full connection layers, and a

softmax classifier. The other convolutional model is MSResNet and it consists of three

FDResNet followed by a small neural network. The performance of this work can be seen

in table 1.8 represented as the F score for three classes and the overall F score.

11

Table 1.8: Performance of X. C. Cao et. al Proposed System

Fnormal FAF Fother Overall F1

0.881 0.966 0.851 0.899

1.3.2 Other works

Other than these works, some researchers have also worked to solve this problem using

other sources of data. One most used source is the Massachusetts Institute of Technology

(MIT)-Boston's Beth Israel Hospital (BIH) Atrial fibrillation database. The database has 23

long-term ECG recordings of human subjects with atrial fibrillation with a duration of 10

hours for each record. Each record contains two ECG signals each sampled at 250 samples

per second with 12-bit resolution over a range of ±10 millivolts. They are made using

ambulatory ECG recorders with a typical recording bandwidth of approximately 0.1 Hz to

40 Hz. The recordings contain rhythm annotations of types AFIB (atrial fibrillation), AFL

(atrial flutter), J (AV junctional rhythm), and N (used to indicate all other rhythms) [16].

Wang et al. [17] propose one of the recent works that have used this database. In their work,

they extract features based on wavelet packet transform to be fed to the artificial neural

network for classification. After filtering the ECG segments, the wavelet coefficients are

obtained from the decomposed ECG and divided into an equal number of segments. From

the segments, the correlation matrix is computed, and based on it the histogram is

constructed. The features needed for the classifier are extracted from the histogram and

assembled as a feature set. To classify the records, these features are fed to a 3-layers neural

network. The network has an input layer of 4 neurons, an output layer of 2 neurons, and a

hidden layer of 10 neurons. They used the sigmoid function as an activation function in the

hidden layer. The value of adaptive learning rate was 0.1 by setting mean square error no

more than 0.001. The work they proposed performed well as can be seen in table 1.9. The

table shows the performance for different types of classifiers that have been used; support

vector machine (SVM), k-nearest neighbors (KNN), and artificial neural network (ANN).

12

Table 1.9: Proposed System Performance of Wang et Al.

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

SVM 97.2 97.8 97.4

KNN 96.3 95.4 96.1

ANN 98.8 98.7 98.9

Faust et al. [18] propose another work that used the same dataset. In this work, they propose

a deep recurrent neural network to classify the signal. They used 20 of the signals from the

MIT-BIH database for training and 3 for testing. They partition the long signals with a

sliding window of 100 beats into blocks that are fed directly to a recurrent neural network.

The proposed model consists of two bidirectional long-short term memory (LSTM), two

fully connected layers, and a global max-pooling layer. The two LSTM layers, forward and

backward, have cells twice the length of the input sequence and they work to learn and

extract the features from the heart rate data sequence. Then, the resulting features are passed

to the global max-pooling layer to be compressed before proceeding to the fully connected

layers where they will be given the final classification. The model has been trained and

evaluated with 10-fold cross-validation and tested with blind-fold evaluation. The

performance of their proposed model can be seen in table 1.10. The 10-fold cross-validation

was applied to 20 records of the database while the other 3 records were used for testing the

proposed model using blind-fold validation.

Table 1.10 Performance of Faust et. al Proposed System

Evaluation Metrics Accuracy Sensitivity Specificity

Cross-Validation 98.51% 98.32% 98.67%

Blind Fold

Validation
99.77% 99.87% 99.61%

13

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents the literature survey in which AF features, selection tools, and machine

learning techniques are mentioned. Chapter 3 shows the details of the methodology and the

steps that have been taken to accomplish the work. Each step is explained in detail. Chapter

4 analyzes the obtained results with explanatory tables and graphs. Chapter 5 concludes the

report with recommendations and future work.

14

CHAPTER 2: LITERATURE REVIEW

To know more about the problem and how to solve it, I first start with signal processing and

knowing about atrial fibrillation features in literature and the other abnormalities. Moreover,

I also highlight the use of feature selection algorithms in the next sections. Since I am using

neural networks, I also give brief information about them and their usage in the last sections.

2.1 Signal Processing

As mentioned previously, the ECG is characterized by the peaks, the intervals, and the

segments. From these characteristics, many features can be extracted to detect atrial

fibrillation and other abnormalities.

2.1.1 Atrial Fibrillation Features

One of the most used characteristics for extracting features is the RR interval. The RR

interval is the time between two successive R peaks as can be seen in figure 2.1. Tateno et

al. [19] proposed to use the Kolmogorov-Smirnov test and the standard coefficients of

variation test based on RR and ΔRR, which is the difference between two successive RR

intervals. They use the standard density of histogram of RR and ΔRR as a template for atrial

fibrillation detection. The compare the coefficient of variation with the standard coefficient

of variation (CV test) and compare the density histogram with the standard density of

histogram (Kolmogorov-Smirnov test).

On the other hand, Ghodrati et. al [20] extracted features based on the absolute deviation of

RR interval and ΔRR, and they call them normalized absolute deviation and normalized

absolute difference. In another work, Ghodrati et Al. [21] presented other features based on

the statistical analysis of the RR interval in which they compared Gaussian and Laplace

probability density functions when applied to the histogram of the normalized RR

differences using the Neyman-Pearson detection approach.

Billeci et al. have mentioned other features, which are extracted from the RR interval, [22]

include the mean, the minimum, and the maximum value of the RR intervals. The root

means square of the successive differences (RMSSD), the mean of the absolute weighted

15

successive difference (MAWSD), the coefficient of sample entropy (CoSEn), the turning

point count (TPC), and the Katz Fractal Dimension (KFD).

Figure 2.1: RR Interval [23]

Another characteristic that is used to detect atrial fibrillation is the P-wave, which happens

because of the atrial activity. The absence of the P-wave indicates the presence of atrial

fibrillation. Firoozabadi et al. [24] extracted several features based on the P-wave. These

features include the mean and standard deviation of the following measures within the

segment: PR interval, P-wave duration, P-wave onset-peak duration, P-wave amplitude

(peak-onset). Also, the number of P-waves detected in the segment, the presence or absence

of potential P-wave in average beat, mean and standard deviation of the correlation of P-

waves in average beat with each beat in the segment.

In the same field, Censi et al. [25] worked to quantify the P-wave variability over time using

three algorithms; based on cross-correlation function, butterfly plots, and dynamic time

warping. Based on these algorithms, they extracted three novel indices: the first one is based

on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI),

the second one is associated with the variation in the amplitude of the P-waves (Amplitude

Dispersion Index, ADI), and the third one is sensible to the phase shift among P-waves

(Warping Index, WI). Based on these indices and from P-wave templates, they extracted

features that were used to identify atrial fibrillation patients.

16

2.1.2 Other Abnormalities

Other features can distinguish atrial fibrillation from other abnormalities. Some of the

features can be extracted in the time domain, other features can be extracted in the frequency

domain, and others in the time-frequency domain.

There are other heartbeat abnormalities or arrhythmia, which are categorized by the

chambers of the heart in which they occur and by what effect they have on the heart's

rhythm. The two main types of heart arrhythmia are tachycardia and bradycardia.

Tachycardia refers to a fast heart rhythm of a rate over 100 beats per minute. Bradycardia

refers to a slow heart rhythm of heart rate below 60 beats per minute, and it is caused by a

failure of the heart signals to fire, as they should. There are three major types of tachycardia:

Atrial tachycardia (starting in the atria), Supraventricular tachycardia (starting above the

ventricles), and Ventricular tachycardia (starting in the ventricles) [23]. Atrial fibrillation is

one of the most common supraventricular tachycardia. Other abnormalities that are in the

same category are paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and

Wolff–Parkinson–White syndrome.

2.2 Features Selection

Many studies have addressed the importance of feature selection in classification problems.

Feature selection is the action of choosing a subset of features from an already existing set.

Feature selection is used to improve classification accuracy by removing irrelevant and

redundant features. Feature selection algorithms can be categorized into wrapper, filter, and

embedded. Wrapping methods compute models with a certain subset of features and

evaluate the importance of each feature. Then they iterate and try a different subset of

features until the optimal subset is reached. Filter methods use a measure other than error

rate to determine whether that feature is useful. Rather than tuning a model, a subset of the

features is selected by ranking them by a useful descriptive measure. Embedded methods

perform feature selection as a part of the model creation process. This method is between

the two methods of feature selection previously explained, as the selection is done in

conjunction with the model tuning process [26].

In this thesis, three different algorithms based on the filter type were compared, the

minimum redundancy maximum relevance (mRMR) algorithm, Chi-square tests, and

ReliefF algorithm. I chose to use filter methods to avoid overfitting the model.

17

2.2.1 Minimum Redundancy Maximum Relevance (mRMR) Algorithm

Minimum Redundancy Maximum Relevance (mRMR) Algorithm selects the features that

have a high correlation with the target class but low correlation among themselves. This

algorithm uses the mutual information difference (MID) criterion as an objective function

of relevance and the mutual information quotient (MIQ) criterion as an objective function

of redundancy [27]. As can be seen in equation (2.1), the purpose of this algorithm is to

maximize the relevance which is 𝐼(𝑥, 𝑦) and minimize the redundancy which is

1

|𝑆|
∑ 𝐼(𝑥, 𝑧)𝑧∈𝑆 by finding the optimal set S of features. The relevance and redundancy are

defined with mutual information I(.) [28].

max
𝑥∈𝑆𝑐

𝑀𝐼𝑄𝑥 = max
𝑥∈𝑆𝑐

𝐼(𝑥, 𝑦)

1
|𝑆|

∑ 𝐼(𝑥, 𝑧)𝑧∈𝑆

(2.1)

2.2.2 Chi-Square (χ2) Test

Chi-Square (χ2) Test is a simple and general algorithm that measures how a model compares

the actual observed data and the expected value. The algorithm depends on the difference

between the actual and the expected values, the degrees of freedom that refer to the

maximum number of logically independent values, and the size of the samples. This

algorithm can be used to test whether two variables are related or independent from each

other. Also, it can be used to test the goodness of fit between an observed distribution and

a theoretical distribution of frequencies. Equation (2.2) represents the formula of the Chi-

square algorithm, where E is the expected value or in this case the category, O is the

observed value, and c is the degree of freedom [29].

𝜒𝑐
2 = ∑

(𝑂𝑖 − 𝐸𝑖)
2

𝐸𝑖

(2.2)

2.2.3 ReliefF Algorithm

ReliefF Algorithm is one of the most widely used algorithms for feature selection and it is

one of the Relief algorithms family. It is an enhanced version of the Relief algorithm to be

used for multi-class classification problems and to be more robust against noise and

incomplete data. This algorithm is based on finding the nearest hit and nearest miss of an

instance, which means the neighboring features of the same class and the neighboring

18

features of the opposite class, respectively. ReliefF algorithm takes an instance and finds its

neighbors and according to the distances between them, it gives them weights. The weight

value is high if the instance distinguishes the opposite class and not the same class [30].

Equation (2.3) shows the weight update for the features using the ReliefF algorithm where

xr is a random observation and xq is the nearest neighbor in the same class.

𝑊𝑗
𝑖 = 𝑊𝑗

𝑖−1 −
Δ𝑗(𝑥𝑟 , 𝑥𝑞)

𝑚
∙ 𝑑𝑟𝑞

(2.3)

The weight update for the features in the case where xr and xq are not in the same class will

be as in equation (2.4).

𝑊𝑗
𝑖 = 𝑊𝑗

𝑖−1 +
𝑝𝑦𝑞

1 − 𝑝𝑦𝑟

∙
Δ𝑗(𝑥𝑟 , 𝑥𝑞)

𝑚

(2.4)

Where Δ𝑗(𝑥𝑟 , 𝑥𝑞) is the difference in the value of the feature between observations xr and

xq. 𝑑𝑟𝑞 is a distance function, m is the number of iterations, 𝑝𝑦𝑟
 is the prior probability of

the class to which xr belongs, and 𝑝𝑦𝑞
 is the prior probability of the class to which xq

belongs.

2.3 Artificial Neural Network

Machine Learning is a part of artificial intelligence that studies the algorithms and tools

used to learn and improve its analyses. These algorithms use input and output datasets to

recognize the patterns and learn from experience, which trains the machine to forecast future

events and make recommendations without human interaction. Machine learning

techniques can be categorized into two main categories: supervised and unsupervised

algorithms. Supervised algorithms use datasets labeled as inputs and outputs to train a

model. The trained model is used for any other set of data to predict and forecast their

output. The supervised algorithms can be seen in classification problems. On the other hand,

unsupervised algorithms use unlabeled data, and the system will try to recognize the

relations between the data and divide them into groups of the same category that will be

decided by the algorithm. Unsupervised algorithms can be seen in clustering problems [31].

Artificial Neural Network is one of the machine learning techniques that is being widely

used in many applications to analyze the data and learn to recommend the output. The neural

network can be thought of as an artificial model of how the human neural system work. The

19

neural network consists of neurons that are organized into layers. It starts with an input layer

that has several neurons equal to the number of input variables. The input layer is followed

by the hidden layer, which varies in size depending on the application, it can be one hidden

layer (shallow neural network) or more than one layer (deep neural network). At the end of

the network, there is an output layer. In classification problems, the output layer has several

neurons equal to the number of classes. In each layer, there are biases and weights for every

neuron and these keep changing in a process called training until the network reaches the

target results by satisfying an objective function. For training, special optimization

algorithms are used. Each neuron has an activation function that works by linearly

combining the inputs of the neuron into one output. An example of a neural network is

shown in figure 2.2 [31].

Figure 2.2: Example of Neural Network [31]

2.3.1 Neural Network Optimization

Optimization or training algorithms are used in a neural network to update the weights and

biases of the neurons to satisfy an objective function. The weights and biases are updated

using small steps called the learning rate. The learning rate is a hyperparameter that should

be set to control how much the weights and biases are adjusted. Setting the learning rate to

20

a very small value may result in training for a long time and setting it to a very large value

may result in missing the optimal result. The objective function or the cost function is a

function that measures the performance of a machine-learning model for given data by

quantifying the error between predicted values and expected values. It is the real-valued

function whose value is to be either minimized or maximized over the set of feasible

alternatives. The cost function that aims to minimize the error between the prediction and

the expectation is usually called the loss function.

Loss functions can be categorized based on their application into regression loss functions

and classification loss functions. In classification, there are exponential loss, square loss,

hinge loss, logistic loss, savage loss, and tangent loss. Square loss is more commonly used

in regression but can be utilized in classification. It is convex and smooth. It is slower than

hinge and logistic loss functions but can solve for the regularization parameter using cross-

validation. Logistic loss is also called cross-entropy loss and it is less sensitive to outliers

because it is convex and grows linearly for negative values. The exponential loss is convex

and grows exponentially for negative values, which makes it more sensitive to outliers.

Hinge loss is convex and continuous but not smooth (is not differentiable) so cannot be used

with gradient descent methods. Tangent loss and savage loss are quasi-convex and bounded

for large negative values, which makes them less sensitive to outliers. Both have been used

in gradient descent methods [32].

Optimization algorithms can be divided into two groups; one is used for differentiable loss

functions and the other for non-differentiable loss functions. Using the gradient to optimize

a function has been proven to be easier and so many research works have been done in

algorithms that use the gradient. Some groups of these algorithms are bracketing algorithms,

local descent algorithms, first-order algorithms, and second-order algorithms.

One of the most popular algorithms and most common way for optimization is the first-

order algorithms, which are generally called the gradient descent algorithms. The gradient

descent algorithms use the gradient to choose the direction to move in the search space. It

starts by calculating the gradient of the function and then following it in the opposite

direction. The gradient descent has three variations that use a different amount of data to

compute the gradient and they try to make a trade-off between the accuracy and the time

consumed. These variants are batch gradient descent (using all samples), stochastic gradient

descent (using one sample), and mini-batch gradient descent (using a small subset of

21

samples). Some of the algorithms that depend on gradient descent are monument, Adagrad,

and Adam. Monument helps accelerate stochastic gradient descent in the relevant direction

and so the convergence will be faster with fewer oscillations. Adagrad adapts the learning

rate to the parameters, which eliminates the need to manually tune the learning rate.

Adaptive Moment Estimation (Adam) also computes adaptive learning rates for each

parameter while keeping an exponentially decaying average of the past gradient [32].

Another algorithm is scaled conjugate gradient backpropagation, which is based on

conjugate directions, but this algorithm does not perform a line search at each iteration. The

conjugate gradient method is generalized by the nonlinear conjugate gradient method for

nonlinear optimization. In addition, there is a resilient backpropagation algorithm, which

eliminates the harmful effects of the magnitudes of the partial derivatives by only

considering the sign of the derivative to determine the direction of the weight update [33].

2.3.2 Activation Functions

Activation Functions or transfer functions are used in artificial neural networks to transform

an input signal into an output signal to be fed as input to the next layer. In an artificial neural

network, the sum of products of inputs and their weights are calculated and then passed to

an activation function to get the output of that particular layer and supply it as the input to

the next layer [34].

Many different activation functions can be categorized as linear and non-linear functions.

Some of the known functions are sigmoid function, hyperbolic tangent function, softmax

function, softsign function, rectified linear unit function, softplus function, exponential

linear function, max out function, swish function, the exponential linear squashing, and hard

exponential linear squashing [35]. In this section, I focus on three functions, which are used

in the proposed system.

One of the most used activation functions is the hyperbolic tangent transfer function known

as tanh function, which is a smooth zero-centered function with an output bound between -

1 and 1. The definition of the hyperbolic tangent transfer function is given in equation (2.5).

The shape of the function is shown in figure 2.3.

𝑡𝑎𝑛ℎ(𝑛) =
𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛

(2.5)

22

Figure 2.3: Hyperbolic Tangent Transfer Function [36]

Rectified Linear Unit (ReLU) also known as Positive linear transfer function is a function

that is a straight line only for positive values and zeroes elsewhere. It is defined in equation

(2.6) and the shape in figure 2.4.

𝑚𝑎𝑥(0, 𝑛) = {
𝑛𝑖 , 𝑖𝑓 𝑛𝑖 ≥ 0
0, 𝑖𝑓 𝑛𝑖 < 0

(2.6)

Figure 2.4: Positive Linear Transfer Function [37]

The Softmax function is mostly used for classification problems in the output layer. It is

used to compute probability distribution from a vector of real numbers. The Softmax

function produces an output which is a range of values between 0 and 1, with the sum of

the probabilities equal to 1. This function is defined in equation (2.7).

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑛) =
𝑒𝑛𝑖

∑ 𝑒𝑛𝑗
𝑗

(2.7)

23

CHAPTER 3: Atrial Fibrillation Automatic Detection

In this chapter, I will explain the details of the system that I used to solve the problem at

hand. The chapter starts with sections that explain the tools and dataset used in this project.

Next, a section that explains the details and steps followed in the methodology.

3.1 Tools

Since I have a prior experience with MATLAB, I chose to code my system using MATLAB

R2020a. All experiments were run on a 64-bit based laptop with Intel Core i7 CPU at 2.7

GHz, 2 cores, and 4 logical processors. The system runs 8 GB RAM.

3.2 Data

The dataset used for this work is the same dataset used in Physionet Challenge 2017. I used

the training set which contains a collection of 8528 ECG recordings. The dataset has an

unbalanced number of each class as follows: 5154 normal rhythms, 2557 other rhythms,

771 atrial fibrillations, and 46 noisy signal records. The signals’ waveforms can be seen in

figure 3.1. The recordings are labeled by an outsourced company and provided by AliveCor

with the data.

Figure 3.1: The ECG Signal of the Four Classes [38]

24

The data was found to have some recordings that are labeled as normal, atrial fibrillation,

or other rhythm are being so noisy and hard to be identified by eye. So, the data has been

re-labeled again by the challenge organizing team until they end up with version 3 of the

dataset. The third version of the dataset has 5076 Normal Rhythm, 2415 Other Rhythm, 758

Atrial Fibrillation, and 279 Noisy Signals.

I used the challenge training dataset for training, validation, and testing by partitioning it

into three parts: 70% for training, 15% for validation, and 15% for testing. The data division

can be seen in table 3.1 is after using a partitioning function that divides the data by blocks

of indices.

Table 3.1: Data Division

Subset Total Normal

Rhythm

Other

Rhythm

Atrial

Fibrillation

Noisy

Signal

Training 5970 3614 1652 512 192

Testing 1279 724 379 130 46

Validation 1279 738 384 116 41

3.3 Methodology

The proposed system has five stages: pre-processing, features extraction, features selection,

classifier training, and results in the evaluation. The block diagram of the system is shown

in figure 3.2.

Pre-
processing

Features
Extraction

Features
Selection

Classifier
Training

Results
Evaluation

Figure 3.2: The Proposed System Block Diagram

Based on this diagram, I developed a MATLAB program which is attached in appendix A.

25

3.3.1 Pre-processing

For the first stage of the system, I used the approach developed in [10]. The program

performs noise cancelation on the signal. Noise removal is needed because the ECG signal

is prone to noise that is caused by several sources like breathing, improper contact of

electrodes, or body movement. The approach is based on spectrogram analysis to identify

the noisy parts in the signal. First, it computes the spectrogram of the signal. Next, it

searches for the regions between successive RR intervals that have more than 50 Hz spectral

power because all-important cardiac information is stored within 20 Hz. Then, the baseline

movement is removed using a high pass filter with a cut-off frequency of 0.5 Hz.

Figure 3.3: Signal Before and After Pre-processing

3.3.2 Features Extraction

The function of the second stage is to extract the features from the basic ECG features: the

peaks, the segments, and the intervals. I used the approach used in [10] which extracts 188

features categorized as follows: morphological features, prior art AF features, HRV

features, frequency features, statistical features, other abnormalities features, and detecting

noisy recording features.

Morphological Features are the features extracted from the peaks P, Q, R, S, and T of the

ECG waveform. These features are used usually by medical staff for identifying cardiac

abnormalities. Morphological features include measuring the median, variance, and range

of different aspects like the corrected QT interval (QTc), QR and QRS widths, slopes of

QR, RS and ST intervals, depth of the Q and S points concerning R, amplitude difference

of the TR wave, ratio of the number of P waves to the number of R waves and distance of

the ST segment crossing from the S point.

26

Prior Art AF Features are features available in the prior art and can identify atrial

fibrillation events. RR irregularity is an important feature of atrial fibrillation and there are

several similar features. Some of these features are AF Evidence, Original Count,

Irregularity Evidence, Pace Count, Density Evidence, Anisotropy Evidence, AF Evidence

from Lorentz plot of RR intervals. Also, there are features derived from the inter-beat

intervals using Poincare plots. Other features include approximate and sample entropy-

based features and coefficient of variation of RR and delta RR intervals.

HRV Features are features related to heart rate variability. HRV features are like the

number of RR intervals above x, normalized by duration of recording, where x lies between

20 and 500 ms (pRRx). Other features are the standard deviation of RR intervals (SDRR),

the standard deviation of RR difference, and the normalized root means square of successive

differences (RMSSD). Also, the normalized spectral power of the RR interval time series

within the frequency region of 0- 0.04 Hz, 0.04-0.15 Hz, and 0.15-0.5 Hz are used as

features.

Frequency Features are also important in this work, and they are extracted in a process

where raw time signal is divided into small windows of 2 seconds duration having 50%

overlapping using hamming window. Then, the Short Time Fourier Transform of each

window is computed for frequency analysis. The extracted features are mean spectral

centroid, spectral roll-off, spectral flux, and normalized spectral power between 0-10 Hz

and 10-20 Hz across all windows in a measurement.

Statistical Features are features defined and calculated through statistical analysis. These

features include the mean, median, variance, range, kurtosis, and skewness of RR intervals

and the probability density estimate (PDE) of the RR intervals and the delta RR intervals.

Other features in this category are the number of peaks on the PDE of the RR and delta RR

intervals and the variation of energy in between the RR peaks. Also, the list of statistical

features includes The Shannon, Tsallis, and Renyi entropy, Linear Predictive Coefficients

(LPC) of the raw time-series data.

Other Abnormalities Features are used to distinguish atrial fibrillation from other

abnormalities. These features are extracted using a sliding window with six peaks per

window and its average RR interval, maximum of the first difference of some samples in

the window with a magnitude exceeding 0.1mV, the normalized power spectrum density

(nPSD) of the window. The heart rate was estimated using an adaptive frequency tracking

27

algorithm to derive features like mean of RR interval, a decrease of HR, maximum SPI

index, average HR, abnormal HR, and others.

Detecting Noisy Recording Features are features used to detect noise and motion artifacts

in the different portions of the signals. This part of the feature extract uses domain-

dependent time and frequency features along with certain statistical features that exploit the

rise and fall in the morphology of the ECG signal. These features distinguish well between

the regularities of the clean ECG signal versus the randomness in a noisy waveform.

3.3.3 Features Selection

For feature selection, three different methods are used: ReliefF algorithm, Chi-square test,

and minimum Redundancy Maximum Relevance (mRMR) algorithm. The proposed system

starts by applying each of the algorithms to the features extracted. The algorithms work to

give each feature a weight according to its importance in predicting the output and so the

features are ranked starting with the most important feature ending with the lowest

importance.

To rank the features in this work, I used existing functions in MATLAB which are

relieff, fscmrmr, and fscchi2. relieff function is an implementation for the

ReliefF algorithm. The function takes the features matrix, target output, and the number of

nearest neighbors as input. The output of the relieff function is the indices of the ranked

features and the weight which is in the range -1 and 1. For the mRMR algorithm, fscmrmr

function was used. The function takes the features matrix and the target output as input. The

output of the function is the indices of the ranked features and the score of each feature.

Finally, fscchi2 function was used as an implementation for the Chi-square algorithm.

The function takes the features matrix and the target output as input. The output of the

function is the indices of the ranked features and the scores for each feature. The score is -

log(p), and p is a small value of the test that indicates the dependence of the feature with

the target.

The next step is to choose the best number of features to be used for each algorithm before

the training. For this step, I calculated the differences in weights between the ranked

features. Then, I specified a threshold by intuition and experiment that should not be

exceeded by the difference. The threshold I choose is the mean of the differences that I

found to be working for the mRMR algorithm and ReliefF algorithm. For the Chi-square

28

algorithm, some features had an infinite value which indicates higher importance, and so I

chose to take all the infinite weighted features as the selected features.

3.3.4 Training Neural Network

I started with a basic simple network that consists of the input layer, output layer, and 2

hidden layers. For initializing the neural network, I used the patternnet function to create a

neural network for classification. The input layer has neurons equal to the number of

features used. The output layer has four output neurons, one for each of the four classes

(Normal rhythm, Atrial fibrillation, another rhythm, Noisy signal). I used the soft-max

transfer function for the output layer and that was kept unchanged across the whole work. I

started the work with two hidden layers each having 20 neurons and using hyperbolic

tangent transfer function and rectified linear unit transfer function, respectively. The initial

neural network architecture is shown in figure 3.4.

Figure 3.4: Neural Network for 113 Input Features

The network was initialized with the following parameters:

• Maximum number of epochs to train = 1000

• Performance goal = 0

• Maximum time to train in seconds = 300

• Minimum performance gradient = 0

• Maximum validation failures = 10

• Learning rate = 0.01

• Increment to weight change = 1.2

• Decrement to weight change = 0.5

• Initial weight change = 0.07

• Maximum weight change = 50.0

• Regularization parameter = 0.1

• Bias = 0.1 for ReLU layer

29

The number of neurons in each hidden layer was tuned several times until the best results

were found. I started the training using the Resilient backpropagation algorithm as it works

best for classification.

After initializing the neural network, the next step was to train it using the chosen ranked

features. The objective function used is cross-entropy and the goal was to minimize it. After

training, the network was tested with the test dataset and the achieved output is compared

with the target data. The process of initialization, training, and finding the results were

repeated 30 times for each set of experiments. Then, the average of the results was taken.

3.3.5 Results Evaluation

To evaluate the results, I used four metrics: recall, precision, accuracy, and F1 measure. To

calculate these metrics, four other values should be calculated: true positive, true negative,

false positive, and false negative. These values determine the correctness of the

classification. True positive is the correctly classified samples as a positive class while true

negative is the correctly classified samples as a negative class. On the other hand, false-

positive is the sample that is wrongly classified as positive and false negative is the sample

that is wrongly classified as negative. The four values together form the confusion matrix

as shown in table 3.2 [39].

Table 3.2: Confusion Matrix

Data Class
Predicted by Classifier

Positive Negative

Marked by

Human Expert

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

After calculating these four values of the confusion matrix, I calculate the four metrics that

evaluate the classification. The recall or sensitivity is a measure of how well the system

correctly classifies the positive samples and it is calculated by equation (3.1):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3.1)

30

Precision is the ability of the system to avoid the wrong predictions and it is calculated using

equation (3.2):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3.2)

Accuracy is the overall performance of classification. It is a measure that depends highly

on the number of samples in each class and requires a balanced dataset. Since the dataset

has an unbalanced number of samples in each class, the accuracy was not a good measure

to evaluate the system, the reason why the F1 measure was needed. Accuracy is calculated

using equation (3.3):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3.3)

F1 measure, F score, or simply F measure is the harmonic mean of the recall and the

precision which solves the problem of evaluating a system with an unbalanced dataset. This

measure has been used in PhysioNet Challenge 2017 to evaluate the works proposed and it

is calculated as follows:

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(3.4)

In this work, I wrote a piece of program to first count the four elements of the confusion

matrix for the four classes, so at the end four confusion matrices were found, one for each

class. Next, the confusion matrices were used to calculate the four metrics of performance

for each class. In the end, four performance measures for each of the four classes were

calculated.

31

CHAPTER 4: RESULTS AND ANALYSIS

To solve this problem, I followed three different approaches. The first approach is just using

a deep neural network to detect atrial fibrillation among four classes. As explained before,

the dataset used is unbalanced, which also makes it a challenge to be solved. To solve the

challenge of an unbalanced dataset, I followed two more approaches: using a weighted

neural network and using the method of under-sampling of the dataset.

4.1 Deep Neural Network

For the first approach, I used a deep neural network. I started the experiments by first

selecting the features to be used for classification. Then, I used a deep neural network fed

with the whole dataset without removing any sample from it to classify the samples into

four classes. I compared three groups of features chosen by three different algorithms.

4.1.1 Feature Selection

First, the three different ranking algorithms: mRMR, Chi-square, and ReliefF algorithm are

explored. The algorithms gave different rankings for the features. The features have been

given a weight using the algorithms and accordingly they were ranked staring by the feature

having the highest weight to be the first down to the lowest at rank 188. The feature ranking

using the ReliefF algorithm is shown in figure 4.1.

Figure 4.1: Ranking of Features using ReliefF Algorithm

32

After ranking the features, I calculated the difference of the weights and found the mean to

be at point 10 which means the first 10 ranked features have a weight that satisfies the

threshold and hence chosen for the next step.

The selected features using the ReliefF algorithm are as the following:

1. Bradycardia binary feature

2. Tachycardia binary feature

3. Number of RR intervals above 20 ms, normalized by duration of recordingBasic

ratio of the difference in P location difference to R location difference

4. P to R ratio

5. Nonlinear HRV feature of short-range scaling exponent alpha from detrended

fluctuation analysis

6. Maximum heart rate in a segment

7. Irregularity evidence

8. Areas relative to the total area within the frequency bands 0-2

9. Areas relative to the total area within the frequency bands 10-150

The same procedure is repeated with the mRMR algorithm. mRMR algorithm has a

different behavior where two features have the highest weights and all other features have

a weight that is comparably very low. The ranking of features using the mRMR algorithm

is shown in figure 4.2.

Figure 4.2: Ranking of Features using mRMR Algorithm

33

As shown in figure 4.2, the two features have high weights compared with the others and it

is also proved by the mean of differences. The two features are:

1. Mean Stepping Increment of Inter Beat Intervals

2. The mean of RR interval

The last selection algorithm is Chi-square. The same procedure has been repeated using the

Chi-square test and the ranking of the features is shown in figure 4.3. As shown in the figure,

the weights are widely varying. 45 of the features had weights that reach infinity which

means their effect on the output is very high. Without calculating the differences and taking

the average, I chose to take the 45 features that have infinity weights.

Figure 4.3: Ranking of Features using Chi-Square Algorithm

The top ten of the 45 infinity-weighted features using the Chi-Square selection tool are the

following:

1. AF Evidence

2. Number of points in the bin containing the Origin

3. Irregularity Evidence

4. Density Evidence

5. Anisotropy Evidence

6. Coefficient of variation of RR

7. Coefficient of variation of ΔRR

8. Mean Stepping Increment of Inter Beat Intervals

34

9. Dispersion of points around the diagonal line in Poincare Plots

10. The median of RR interval

At the end of this step, I had 3 groups of features, one group for each selection algorithm. 2

features resulted from the mRMR algorithm, 10 features resulted from the ReliefF

algorithm, and 45 features resulted from the Chi-Square algorithm. All these groups of

features are used for the next step.

4.1.2 Tuning Network

In this step, I used the 3 groups of features to tune the neural network. I started by using

features selected by the mRMR algorithm, I tried to tune the number of layers and neurons

to minimize the cross-entropy and find the best network that can classify the data. Since

there is no rule of thumb to tune the number of layers and neurons, I started with a simple

2-layer network with 20 neurons in each layer. I trained the network 30 times and took the

average. Then, I added one more layer and doubled the number of neurons in each layer,

and trained the network again. I performed 5 experiments as can be seen in table 4.1. I had

to make a tradeoff between the performance and the elapsed time consumed for training.

For this reason, I only had 5 layers with 160 neurons. The table shows the average F1 score

for three classes after 30 iterations, the overall F1 performed on the training dataset, and the

testing dataset for features extracted using the mRMR algorithm.

Table 4.1: Results of Deep Neural Network using mRMR Algorithm

Layers

Neurons

per layer

AF Normal Other Overall

F1 F1 std F1 std F1 std

Training

2 20 0.328 0.291 0.724 0.329 0.543 0.058 0.531

3 40 0.371 0.287 0.874 0.006 0.585 0.022 0.610

4 80 0.296 0.301 0.868 0.020 0.554 0.082 0.572

5 160 0.263 0.286 0.836 0.046 0.408 0.224 0.502

Testing

2 20 0.308 0.275 0.715 0.325 0.528 0.043 0.517

3 40 0.341 0.264 0.857 0.008 0.549 0.024 0.582

4 80 0.271 0.276 0.853 0.022 0.520 0.082 0.548

5 160 0.256 0.279 0.820 0.055 0.393 0.216 0.490

35

The same process is performed using features extracted using the ReliefF algorithm. I

started with a simple 2-layer network and ended up with a 5-layer network with 160 neurons

in each layer. Table 4.2 shows the resulting F1 score for three classes and the overall F1.

Table 4.2: Results of Deep Neural Network using ReliefF Algorithm

Layers

Neurons

per layer

AF Normal Other Overall

F1 F1 std F1 std F1 std

Training

2 20 0.697 0.190 0.890 0.002 0.688 0.013 0.758

3 40 0.763 0.209 0.905 0.004 0.742 0.024 0.804

4 80 0.629 0.287 0.886 0.030 0.674 0.126 0.730

5 160 0.407 0.339 0.868 0.042 0.589 0.201 0.621

Testing

2 20 0.671 0.183 0.875 0.004 0.664 0.014 0.737

3 40 0.650 0.178 0.875 0.003 0.660 0.015 0.728

4 80 0.571 0.262 0.864 0.032 0.631 0.115 0.689

5 160 0.360 0.305 0.847 0.045 0.559 0.191 0.589

The last set of experiments in this section were conducted using the Chi-Square algorithm

and the 45 features selected by this algorithm. Also, here I started with a simple 2-layers

network. The results are shown in table 4.3.

Table 4.3: Results of Deep Neural Network using Chi-Square Algorithm

Layers

Neurons

per layer

AF Normal Other Overall

F1 F1 std F1 std F1 std

Training

2 20 0.599 0.325 0.881 0.005 0.670 0.025 0.717

3 40 0.606 0.340 0.880 0.005 0.665 0.034 0.717

4 80 0.735 0.200 0.880 0.005 0.670 0.026 0.762

5 160 0.582 0.306 0.853 0.041 0.541 0.224 0.659

Testing

2 20 0.571 0.315 0.858 0.005 0.639 0.026 0.689

3 40 0.584 0.328 0.859 0.003 0.637 0.027 0.693

4 80 0.711 0.194 0.860 0.005 0.639 0.022 0.737

5 160 0.554 0.296 0.833 0.046 0.520 0.217 0.636

36

Based on the obtained results using these three feature selection algorithms, it is found that

the ReliefF and Chi-Square algorithms outperform the mRMR approach. Comparing the

three algorithms, it can be seen clearly in figure 4.4 that ReliefF and Chi-Square algorithms

gave better F1 score values than the mRMR algorithm since it is using only 2 features. Yet,

these numbers are not good enough for the system to identify atrial fibrillation. For this

reason, I had to go for other approaches.

Figure 4.4: Comparison of Overall F1 using 3 Feature Selection Algorithms

4.2 Weighted Neural Network

The dataset I used for this project is unbalanced which made it a challenge in detecting atrial

fibrillation among the other classes. After comparing multiple state-of-the-art approaches,

I found that one way to solve the issue is by assigning weights to the classes. Since atrial

fibrillation is the subject of my study and it is considered a minority class, I gave it a high

weight compared to the other classes. The weights assigned to the classes are as follows:

atrial fibrillation = 1, normal rhythm = 0.1, other rhythm = 0.3, and noisy signal = 0. For

this set of experiments, I used trial and error to tune the parameters and hyperparameters in

the network. I found that the initial values work well for this step, so I kept them unchanged.

4.2.1 Tuning Network

For tuning the number of layers and number of neurons in each layer, I used the same

approach as in the previous step. I started with a 2-layers network with 20 neurons in each

0.450

0.500

0.550

0.600

0.650

0.700

0.750

0.800

2 3 4 5

O
ve

ra
ll

F1

Number of Layers

Overall F1 vs Number of Layers

ReliefF mRMR Chi2

37

layer. I repeated the experiment 30 times and calculated the average of the F1 score for all

classes. Then I added one more layer and doubled the number of neurons in each layer. I

started by using the features extracted using the ReliefF algorithm and the results are shown

in table 4.4.

Table 4.4: Results of Weighted Neural Network using ReliefF Algorithm

Layers

Neurons

per

layer

AF Normal Other
Overall

F1
F1 std F1 std F1 std

Training

2 20 0.689 0.008 0.851 0.003 0.644 0.003 0.728

3 40 0.762 0.012 0.868 0.003 0.698 0.006 0.776

4 80 0.710 0.030 0.832 0.157 0.663 0.049 0.735

5 160 0.626 0.176 0.743 0.297 0.617 0.140 0.662

Testing

2 20 0.655 0.010 0.831 0.003 0.622 0.005 0.702

3 40 0.685 0.014 0.848 0.004 0.655 0.009 0.729

4 80 0.665 0.026 0.811 0.153 0.629 0.040 0.702

5 160 0.589 0.162 0.725 0.289 0.588 0.127 0.634

Next, I used the features extracted using the mRMR algorithm. I followed the same

procedure. The results obtained at this stage are shown in table 4.5.

38

Table 4.5 Results of Weighted Neural Network using mRMR Algorithm

Layers

Neurons

per

layer

AF Normal Other
Overall

F1 F1 std F1 std F1 std

Training

2 20 0.510 0.003 0.824 0.009 0.371 0.019 0.568

3 40 0.555 0.020 0.794 0.150 0.516 0.035 0.622

4 80 0.547 0.021 0.796 0.151 0.508 0.030 0.617

5 160 0.557 0.022 0.761 0.207 0.507 0.044 0.609

Testing

2 20 0.579 0.010 0.825 0.008 0.428 0.031 0.611

3 40 0.604 0.014 0.778 0.147 0.524 0.023 0.635

4 80 0.602 0.016 0.780 0.148 0.522 0.022 0.635

5 160 0.610 0.017 0.749 0.204 0.521 0.033 0.626

Finally, I used the features extracted using the Chi-square algorithm to see how they

perform following the same procedure. The results of the weighted neural network using

features extracted using the Chi-square algorithm are shown in table 4.6.

Table 4.6 Results of Weighted Neural Network using Chi-Square Algorithm

Layers

Neurons

per

layer

AF Normal Other
Overall

F1 F1 std F1 std F1 std

Training

2 20 0.715 0.006 0.831 0.003 0.626 0.009 0.724

3 40 0.732 0.019 0.840 0.010 0.661 0.023 0.744

4 80 0.712 0.022 0.833 0.014 0.639 0.025 0.728

5 160 0.669 0.141 0.775 0.211 0.589 0.161 0.678

Testing

2 20 0.728 0.011 0.815 0.006 0.618 0.006 0.720

3 40 0.737 0.011 0.820 0.011 0.649 0.021 0.735

4 80 0.725 0.017 0.814 0.013 0.629 0.018 0.723

5 160 0.679 0.136 0.755 0.206 0.575 0.158 0.670

39

At the end of these experiments, I compared the overall F1 score of the three algorithms.

As can be seen in figure 4.5, the features extracted using the Chi-Square algorithm

outperform the other features by having a higher F1 score. However, these results are not

good enough for the network to detect atrial fibrillation. Moreover, I wanted to try the

second approach and compare how it performs when compared with this approach.

Figure 4.5 Comparison of Overall F1 on Weighted Neural Network

4.3 Under-sampling Dataset

The second approach for solving the unbalanced dataset challenge is under-sampling. For

this approach, I under-sampled the dataset by removing samples from the majority classes

which are in this case the normal rhythm class and the other rhythms class. The new dataset

has 846 samples in the normal rhythm class, 805 samples in the other rhythm class, 758

samples in the atrial fibrillation class, and 279 samples in the noisy signal class. The total

number of observations in the new under-sampled dataset is 2688 records. In this set of

experiments, I also used the same parameters and hyperparameters in the network after trial-

and-error tuning.

4.3.1 Feature Selection

Before training, I started by feature selection because of the dataset change. I applied the

three algorithms to select other features based on the new under-sampled dataset. As can be

seen in figure 4.6, the number of features selected by the mRMR algorithm is now 6

features.

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

2 3 4 5

O
ve

ra
ll

F1

Number of Layers

Overall F1 vs Number of Layers

ReliefF mRMR Chi2

40

Figure 4.6 Ranking of Features using the mRMR Algorithm from Under-Sampled Dataset

The selected features using the mRMR algorithm from the under-sampled dataset are

different from the features selected from the original dataset, and these features are:

1. Median of absolute difference of heartrate

2. Sample entropy estimates

3. Frequency feature

4. Tsallis Entropy

5. The basic ratio of the median of difference of R location

6. Spectral Centroid

On the other hand, the features selected by the ReliefF algorithm are almost identical with

a small variation in the number wherefrom the under-sampled dataset I got 11 features.

Figure 4.7 shows the ranking of the features using the ReliefF algorithm, which looks

similar to the figure of ranked features on the original dataset.

41

Figure 4.7 Ranking of Features using ReliefF Algorithm from Under-Sampled Dataset

The features selected using the ReliefF algorithm are the following:

1. Bradycardia binary feature

2. The basic ratio of the difference in P location difference to R location difference

3. P to R ratio

4. Number of RR intervals above 20 ms, normalized by duration of recording

5. Standard deviation in R location after removing outliers

6. Irregularity Evidence

7. Tachycardia binary feature

8. Maximum heart rate in the segment

9. Short-range scaling exponent

10. AF Evidence

11. Minimum of RR

Finally, the features selected using the Chi-Square algorithm are also different than the ones

selected from the original dataset. From the modified dataset, I found only 6 features having

infinity weight and those were selected for the next stage. The 6 features can be seen in

figure 4.8 as the red bars at the start of the graph.

42

Figure 4.8 Ranking of Features using Chi-Square Algorithm from Under-Sampled Dataset

The 6 selected features are the following:

1. AF Evidence

2. Irregularity Evidence

3. Coefficient of variation of delta RR

4. Mean Stepping Increment of Inter Beat Intervals

5. The standard deviation of Empirical Mode Decomposition

6. Median of absolute difference of heartrate

4.3.2 Tuning Network

For tuning the network, I followed the same procedure used in the previous steps. I started

with a 2-layers network with 20 neurons in each layer. Then I added one more layer and

doubled the number of neurons in all layers. Starting with the features extracted using the

ReliefF algorithm, I calculated the F1 score for each class for 30 iterations and took the

average of 30. The resulted F1 score using the ReliefF algorithm is shown in table 4.7. The

table shows improvement in the results than the results obtained in the previous stages.

43

Table 4.7: Results of Under-Sampling using ReliefF Algorithm

Layers

Neurons

per layer

AF Normal Other
Overall F1

F1 std F1 std F1 std

Training

2 20 0.873 0.008 0.826 0.004 0.712 0.010 0.803

3 40 0.889 0.024 0.839 0.015 0.740 0.030 0.823

4 80 0.794 0.162 0.667 0.307 0.636 0.083 0.699

5 160 0.779 0.102 0.696 0.267 0.591 0.180 0.689

Testing

2 20 0.807 0.014 0.793 0.009 0.665 0.020 0.755

3 40 0.797 0.016 0.778 0.013 0.644 0.023 0.740

4 80 0.757 0.151 0.637 0.294 0.610 0.063 0.668

5 160 0.758 0.106 0.667 0.255 0.576 0.170 0.667

The next algorithm was mRMR. Using the same procedure, I obtained the results shown in

table 4.8.

Table 4.8: Results of Under-Sampling using mRMR Algorithm

Layers

Neurons

per layer

AF Normal Other
Overall F1

F1 std F1 std F1 std

Training

2 20 0.707 0.041 0.656 0.032 0.386 0.066 0.583

3 40 0.751 0.069 0.710 0.055 0.520 0.059 0.660

4 80 0.720 0.088 0.706 0.078 0.519 0.071 0.649

5 160 0.603 0.220 0.564 0.269 0.411 0.202 0.526

Testing

2 20 0.677 0.053 0.641 0.041 0.338 0.085 0.552

3 40 0.700 0.065 0.655 0.052 0.456 0.061 0.604

4 80 0.686 0.071 0.645 0.072 0.452 0.078 0.595

5 160 0.576 0.190 0.512 0.244 0.357 0.179 0.482

Finally, the results using the features extracted using the Chi-square algorithm are shown in

table 4.9.

44

Table 4.9: Results of Under-Sampling using Chi-Square Algorithm

Layers
Neurons

per layer

AF Normal Other
Overall F1

F1 std F1 std F1 std

Training

2 20 0.834 0.009 0.751 0.010 0.556 0.020 0.714

3 40 0.846 0.013 0.766 0.013 0.601 0.028 0.738

4 80 0.815 0.080 0.730 0.139 0.531 0.182 0.692

5 160 0.777 0.147 0.739 0.048 0.547 0.105 0.687

Testing

2 20 0.772 0.010 0.744 0.027 0.575 0.039 0.697

3 40 0.781 0.017 0.747 0.015 0.594 0.028 0.707

4 80 0.758 0.062 0.708 0.136 0.535 0.183 0.667

5 160 0.705 0.135 0.735 0.056 0.551 0.107 0.664

Comparing the Overall F1 obtained using the three algorithms shows that the ReliefF

algorithm outperforms as seen in figure 4.9.

Figure 4.9: Comparison of Overall F1 on Under-sampled Dataset

0.450

0.500

0.550

0.600

0.650

0.700

0.750

0.800

2 3 4 5

O
ve

ra
ll

F1

Number of Layers

Overall F1 vs Number of Layers

ReliefF mRMR Chi2

45

 At the end of this stage, I can conclude that using the ReliefF algorithm yields the best

features for the network to identify atrial fibrillation. Also, using the under-sampling

approach helps in improving the network performance and ability to distinguish the

different classes. Moreover, the highest Overall F1 score was 82.3 % on the training dataset

and was found using a network of 3 layers and 40 neurons in each layer. For the next step,

I tune some parameters and hyperparameters to further improve the results.

4.4 Changing Activation Functions

For this stage, I have fixed the number of layers and the group of features to be used. For

the next steps, I used the group of features extracted using the ReliefF algorithm from the

balanced dataset and a network of 3 layers with 40 neurons in each layer. At this stage, I

tried to measure the effect of changing the activation functions used in the 4-layers network.

Along with changing the activation layer, I tuned the number of neurons and some

parameters to achieve the best results possible. I used 5 different setups as follows:

1. ReLU for all layers. 80 neurons per layer, Regularization = 0.9

2. tanh for all layers. 80 neurons per layer, Regularization = 0.7

3. tanh for layer 1, ReLU for layers 2 and 3. 40 neurons per layer, Regularization = 0.7

4. tanh for layers 1 and 3, ReLU for layer 2. 40 neurons per layer, Regularization = 0.7

5. tanh for layers 1 and 2, ReLU for layer 3. 80 neurons per layer, Regularization = 0.5

The results shown in table 4.10 show that changing the activation function along with tuning

the number of neurons and the regularization parameter gave good results. In addition, I

was able to achieve networks that do not overfit the data. From these results, I fixed the

activation functions as in setup 2 in which uses tanh in all layers and the number of neurons

in each layer is set to 80 with a regularization parameter of 0.7.

46

Table 4.10: Changing Activation Functions

Setup
AF Normal Other

Overall F1
F1 std F1 std F1 std

Training

1 0.824 0.026 0.806 0.009 0.649 0.028 0.760

2 0.857 0.015 0.816 0.009 0.694 0.019 0.789

3 0.823 0.007 0.801 0.004 0.645 0.005 0.756

4 0.837 0.016 0.809 0.007 0.662 0.018 0.769

5 0.870 0.014 0.823 0.011 0.712 0.022 0.802

Testing

1 0.809 0.018 0.777 0.017 0.625 0.018 0.737

2 0.818 0.011 0.794 0.007 0.680 0.018 0.764

3 0.818 0.009 0.793 0.005 0.650 0.012 0.754

4 0.818 0.007 0.790 0.007 0.651 0.016 0.753

5 0.814 0.017 0.792 0.009 0.684 0.020 0.763

4.5 Changing Learning Algorithm

After fixing the numbers in the previous stage, other learning algorithms were used to train

the network. The algorithms that I used here, and their parameters that I tuned by trial and

error to get the best results are as follows:

• SCG: Scaled conjugate gradient backpropagation, with parameters: Marquardt

adjustment parameter=0.005, Change in weight for second derivative

approximation=5.0e-5, Parameter for regulating the indefiniteness of the Hessian =

5.0e-7

• RP: Resilient backpropagation, with parameters: Learning rate=0.01, Increment to

weight change=1.2, Decrement to weight change=0.5, Initial weight change=0.07,

Maximum weight change=50

• GD: Gradient descent backpropagation, with parameters: Learning rate=1

• GDA: Gradient descent with adaptive learning rate backpropagation, with parameters:

Learning rate=1, Ratio to increase learning rate=1.05, Ratio to decrease learning

rate=0.7, Maximum performance increase=1.04

• GDM: Gradient descent with momentum, with parameters: Learning rate=5,

Momentum constant=0.5

47

Table 4.11: Results Using Different Learning Algorithms for Training Network

Learning Algorithm
AF Normal Other

Overall F1
F1 std F1 std F1 std

Training

SCG 0.845 0.061 0.780 0.165 0.674 0.122 0.766

RP 0.859 0.016 0.817 0.009 0.696 0.020 0.791

GD 0.808 0.220 0.796 0.151 0.688 0.051 0.764

GDA 0.765 0.209 0.762 0.145 0.639 0.047 0.722

GDM 0.802 0.218 0.788 0.149 0.674 0.039 0.755

Testing

SCG 0.794 0.039 0.739 0.159 0.637 0.109 0.723

RP 0.816 0.016 0.797 0.007 0.683 0.017 0.765

GD 0.741 0.202 0.759 0.144 0.629 0.044 0.710

GDA 0.753 0.206 0.743 0.141 0.635 0.053 0.710

GDM 0.756 0.206 0.763 0.144 0.652 0.035 0.724

The results shown in table 4.11 show that the obtained results are in the range of 71-76%.

They mainly differ in the time consumed for training. The highest results achieved when

using the resilient backpropagation algorithm. The graph in figure 4.10 shows how these

algorithms compared among themselves.

Figure 4.10: Comparing Learning Algorithms for Training Network

The best results achieved after all these experiments are shown in table 4.12. The table

shows the F1 score, precision, recall, and accuracy for atrial fibrillation, normal rhythm,

0.680

0.690

0.700

0.710

0.720

0.730

0.740

0.750

0.760

0.770

SCG RP GD GDA GDM

Overall F1

48

and other rhythm classes. Also, the table shows the overall performance measures achieved

from the test dataset.

Table 4.12: Best Achieved Results

Performance

Measure
AF Normal Other Overall

F1 0.816 0.797 0.683 0.765

Precision 0.774 0.801 0.722 0.766

Recall 0.864 0.794 0.650 0.769

Accuracy 0.885 0.883 0.819 0.862

Figure 4.11 shows how the performance changes to minimize the cross-entropy cost

function at each epoch until it reaches the optimal value at epoch 116.

Figure 4.11 Changes in Performance with Each Epoch

These results are obtained using the following parameters and hyperparameters:

• 3 layers and 80 neurons in each layer

• Learning algorithm = Resilient backpropagation

• Maximum number of epochs to train = 1000

• Performance goal = 0

49

• Maximum time to train in seconds = 300

• Minimum performance gradient = 0

• Maximum validation failures = 10

• Learning rate=0.01

• Increment to weight change=1.2

• Decrement to weight change=0.5

• Initial weight change=0.07

• Maximum weight change=50

• Regularization parameter = 0.7

• Activation function = tanh for all layers

The network structure can be seen in figure 4.12. The network takes 11 features as input

and gives 4 outputs representing the four classes.

Figure 4.12: The Best Results Neural Network Structure

After some more statistical analysis of the results, I calculated the p-value for the results

obtained from training and testing and found that p < 0.05 which means that the results are

statistically significant.

4.6 Comparing with related work

To validate the developed neural network architecture, a qualitative comparison with the

most related approaches was conducted. Table 4.13 shows the result from this work

compared with the result from the works mentioned in the related work section. I compared

the overall F1 score achieved by the proposed system with the overall F1 score achieved by

related works. The results show that the work that has been done in this project compared

50

well with the previous works. However, I got slightly lower values because of the lower

complexity of the system in comparison with the other models.

The result achieved in this project might not be as good as the results achieved in other

works. However, in this work, I was merely trying to see how a simple feedforward neural

network would compare with complex approaches like a convolutional neural network,

recurrent neural network, and forest tree ensemble. The results of this work proofs that a

simple feedforward neural network can be a good classifier for such complex problems. The

complexity of the system proposed in this project is light and fast than others and consumes

less energy. It can be used for portable devices and real-time applications better than other

techniques.

Table 4.13: Comparison of Result with Related Works

Method F1-Score (%)

Proposed Neural Network 76.50

Datta et al. 79.00

Hong et al. 86.92

Teijeiro et al. 85.00

Zabihi et al. 79.43

Mahajan et al. 76.00

51

CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS

This thesis describes the details of the work I did to detect atrial fibrillation from ECG

records. The thesis introduces the work with cardiology basics, description of the problem,

and related work. A brief literature review about AF features, selection tools, and machine

learning techniques is also included. The methodology is explained in detail followed by

the results and analysis.

In this work, I used an artificial neural network to detect atrial fibrillation from ECG

records. I extracted 188 features from the ECG records but not all of them were useful. I

used different algorithms for feature selection and reduction to minimize computation time

and maximize classification accuracy and these algorithms are the minimum redundancy

maximum relevance (mRMR) algorithm, Chi-square tests, and ReliefF algorithm. I faced

the challenge of the unbalanced dataset and tried to solve it by using the weighted neural

network and by under-sampling the dataset to be almost balanced. Furthermore, I optimized

the network by tuning the number of features, number of neurons in the hidden layers,

number of layers, and parameters and hyper-parameters of the network.

Comparing the results achieved in this work with the most related approaches, I found that

the developed neural network could achieve an overall F1 score of 76.5%, which is

comparable with the results achieved by other researchers.

These experiments have been using a feedforward neural network with scaled conjugate

gradient backpropagation for training the network. Usually, researchers use convolutional

neural networks and recurrent neural networks to solve this kind of problem. Others also

use forest tree and ensemble models, which perform very well on this kind of problem.

However, I wanted to see how a simple feedforward neural network would perform against

those approaches. The results show good numbers for a light system which makes it a good

choice to be used in portable devices and real-time applications.

52

REFERENCES

[1] I. Kucybała, K. Ciuk, and W. Klimek-Piotrowska, “Clinical anatomy of human heart

atria and interatrial septum - Anatomical basis for interventional cardiologists and

electrocardiologists. Part 1: Right atrium and interatrial septum,” Kardiol. Pol., vol.

76, no. 3, pp. 499–509, 2018.

[2] C. Bianco, “How Your Heart Works Anatomy of the Heart,” Heart, 2003. [Online].

Available: https://www.bhf.org.uk/informationsupport/how-a-healthy-heart-works.

[3] H. Anatomy, “Picture of the Heart,” 2018. .

[4] S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati, “Classification of ECG signals

using machine learning techniques: A survey,” Conf. Proceeding - 2015 Int. Conf.

Adv. Comput. Eng. Appl. ICACEA 2015, no. March, pp. 714–721, 2015.

[5] J. Aspuru et al., “Segmentation of the ECG signal by means of a linear regression

algorithm,” Sensors (Switzerland), vol. 19, no. 4, 2019.

[6] National Institutes of Health, “Types of Atrial Fibrillation - NHLBI, NIH,” 2014.

[Online]. Available: https://patient.info/heart-health/atrial-fibrillation-leaflet.

[7] K. H. Kuck, “Atrial fibrillation,” Herz -Munich-, 2017. [Online]. Available:

https://www.nhlbi.nih.gov/health-topics/atrial-fibrillation.

[8] H. Prevent and A. Attack, “How to Help Prevent an AFib Attack,” 2021. [Online].

Available: https://www.webmd.com/heart-disease/atrial-fibrillation/ss/slideshow-

help-prevent-afib-attack.

[9] G. D. Clifford et al., “AF classification from a short single lead ECG recording: The

PhysioNet/computing in cardiology challenge 2017,” Comput. Cardiol. (2010)., vol.

44, pp. 1–4, 2017.

[10] S. Datta et al., “Identifying normal, AF and other abnormal ECG rhythms using a

cascaded binary classifier,” Comput. Cardiol. (2010)., vol. 44, pp. 1–4, 2017.

[11] S. Hong et al., “ENCASE: An ENsemble ClASsifiEr for ECG classification using

expert features and deep neural networks,” Comput. Cardiol. (2010)., vol. 44, pp. 1–

53

4, 2017.

[12] T. Teijeiro, C. A. García, D. Castro, and P. Félix, “Arrhythmia classification from

the abductive interpretation of short single-lead ECG records,” Comput. Cardiol.

(2010)., vol. 44, pp. 1–4, 2017.

[13] M. Zabihi, A. B. Rad, A. K. Katsaggelos, S. Kiranyaz, S. Narkilahti, and M. Gabbouj,

“Detection of atrial fibrillation in ECG hand-held devices using a random forest

classifier,” Comput. Cardiol. (2010)., vol. 44, pp. 1–4, 2017.

[14] P. Cao et al., “A novel data augmentation method to enhance deep neural networks

for detection of atrial fibrillation,” Biomed. Signal Process. Control, vol. 56, p.

101675, 2020.

[15] X. C. Cao, B. Yao, and B. Q. Chen, “Atrial Fibrillation Detection Using an Improved

Multi-Scale Decomposition Enhanced Residual Convolutional Neural Network,”

IEEE Access, vol. 7, pp. 89152–89161, 2019.

[16] G. B. Moody and R. G. Mark, “MIT-BIH Atrial Fibrillation Database,” 1992.

[Online]. Available:

https://physionet.org/content/afdb/1.0.0/%0Ahttps://doi.org/10.13026/C2MW2D.

[17] J. Wang, P. Wang, and S. Wang, “Automated detection of atrial fibrillation in ECG

signals based on wavelet packet transform and correlation function of random

process,” Biomed. Signal Process. Control, vol. 55, p. 101662, 2020.

[18] O. Faust, A. Shenfield, M. Kareem, T. R. San, H. Fujita, and U. R. Acharya,

“Automated detection of atrial fibrillation using long short-term memory network

with RR interval signals,” Comput. Biol. Med., vol. 102, no. July, pp. 327–335, 2018.

[19] K. Tateno and L. Glass, “Automatic detection of atrial fibrillation using the

coefficient of variation and density histograms of RR and ΔRR intervals,” Med. Biol.

Eng. Comput., vol. 39, no. 6, pp. 664–671, 2001.

[20] A. Ghodrati, B. Murray, and S. Marinello, “RR interval analysis for detection of

Atrial Fibrillation in ECG monitors,” Proc. 30th Annu. Int. Conf. IEEE Eng. Med.

Biol. Soc. EMBS’08 - "Personalized Healthc. through Technol., no. 1, pp. 601–604,

2008.

54

[21] A. Ghodrati and S. Marinello, “Statistical analysis of RR interval irregularities for

detection of atrial fibrillation,” Comput. Cardiol., vol. 35, pp. 1057–1060, 2008.

[22] L. Billeci, F. Chiarugi, M. Costi, D. Lombardi, and M. Varanini, “Detection of AF

and other rhythms using RR Variability and ECG spectral measures,” Comput.

Cardiol. (2010)., vol. 44, pp. 1–4, 2017.

[23] C. C. Lin, C. Y. Yang, Z. Zhou, and S. Wu, “Intelligent health monitoring system

based on smart clothing,” International Journal of Distributed Sensor Networks,

2018. [Online]. Available: https://columbiasurgery.org/conditions-and-

treatments/arrhythmiaatrial-fibrillation#:~:text=Atrial Fibrillation-,Atrial fibrillation

(AF) is a form of arrhythmia%2C or,over 65 years of age.

[24] R. Firoozabadi, R. E. Gregg, and S. Babaeizadeh, “P-wave Analysis in Atrial

Fibrillation Detection Using a Neural Network Clustering Algorithm,” in Computing

in Cardiology, 2018, vol. 2018-Septe.

[25] F. Censi et al., “P-wave Variability and Atrial Fibrillation,” Sci. Rep., vol. 6, pp. 1–

7, 2016.

[26] I. Iguyon and A. Elisseeff, “An introduction to variable and feature selection,” J.

Mach. Learn. Res., vol. 3, no. April, pp. 1157–1182, 2003.

[27] M. Radovic, M. Ghalwash, N. Filipovic, and Z. Obradovic, “Minimum redundancy

maximum relevance feature selection approach for temporal gene expression data,”

BMC Bioinformatics, vol. 18, no. 1, pp. 1–14, 2017.

[28] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene

expression data,” Proc. 2003 IEEE Bioinforma. Conf. CSB 2003, pp. 523–528, 2003.

[29] M. L. Mchugh, “The Chi-square test of independence Lessons in biostatistics,”

Biochem. Medica, vol. 23, no. 2, pp. 143–9, 2013.

[30] M. ROBNIK SIKONJA MarkoRobnik and friuni-ljsi IGOR KONONENKO

IgorKononenko, “Theoretical and Empirical Analysis of ReliefF and RReliefF,”

Mach. Learn., vol. 53, pp. 23–69, 2003.

[31] F. Musumeci et al., “An Overview on Application of Machine Learning Techniques

in Optical Networks,” IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp. 1383–1408,

55

2019.

[32] Y. Shen, “Loss Functions for Binary Classification and Class,” 2005.

[33] M. F. Møller, “PREPRINT A Scaled Conjugate Gradient Algorithm for Fast

Supervised Learning Supervised Learning,” 1990.

[34] S. Sharma and S. Sharma, “Understanding Activation Functions in Neural

Networks,” Int. J. Eng. Appl. Sci. Technol., vol. 4, no. 12, pp. 310–316, 2017.

[35] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:

Comparison of trends in practice and research for deep learning,” arXiv, pp. 1–20,

2018.

[36] P. Tutorials, “Understand tanh (x) Activation Function : Why You Use it in Neural

Networks,” 2021. [Online]. Available:

https://www.tutorialexample.com/understand-tanhx-activation-function-why-you-

use-it-in-neural-networks/.

[37] R. L. Unit, “Machine Learning FAQ Why is the ReLU function not differentiable at

x = 0 ?,” 2021. [Online]. Available: https://sebastianraschka.com/faq/docs/relu-

derivative.html.

[38] G. D. Clifford et al., “AF classification from a short single lead ECG recording: The

PhysioNet/computing in cardiology challenge 2017,” Computing in Cardiology,

2017. [Online]. Available: https://physionet.org/content/challenge-2017/1.0.0/.

[39] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for

classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, 2009.

[40] D. Stathakis, “How many hidden layers and nodes?,” Int. J. Remote Sens., vol. 30,

no. 8, pp. 2133–2147, 2009.

56

Appendix A: MATLAB Program

training_net.m

close all

clear all

%% Prepare input/output data

% load('3Features-v3.mat')

load('3Features_balanced-v3.mat')

inR = FeatR';

inM = FeatM';

inC = FeatC';

Y = reference_tab;

labels = {'A' 'N' 'O' '~'};

Out = Y;

Outbi = cell2mat(cellfun(@(x)

strcmp(x,labels),Out,'UniformOutput',0));

Outde = bi2de(Outbi);

Outde(Outde == 4) = 3;

Outde(Outde == 8) = 4;

t=Outbi';

%% Neural Network

accuracy=[];

recall=[];

precision=[];

f1_measure=[];

f1_max=[];

elapsed_time=[];

X=inR;

tic

k=4; %number of layers

for i=1:30

 i

 %% Prepare neural network

 hiddenLayerSize = [80 80 80 80];

57

 net = patternnet(hiddenLayerSize);

 net.performFcn = 'crossentropy';

 net.performParam.regularization = 0;;

 net.performParam.normalization = 'standard';

 net.layers{1}.transferFcn='tansig';%tansig

 net.layers{2}.transferFcn='poslin';

 % net.layers{3}.transferFcn='poslin';

 % net.layers{4}.transferFcn='poslin';

 % net.layers{5}.transferFcn='poslin';

 net.input.processFcns =

{'removeconstantrows','mapminmax'};

 net.output.processFcns =

{'removeconstantrows','mapminmax'};

 net.divideFcn = 'divideblock'; % Divide data by blocks

 net.divideMode = 'sample'; % Divide up every sample

 net.divideParam.trainRatio = 70/100;

 net.divideParam.valRatio = 15/100;

 net.divideParam.testRatio = 15/100;

 net.trainFcn = 'trainscg'; % Resilient backpropagation

 net.plotFcns =

{'plotperform','plottrainstate','ploterrhist','plotregressio

n', 'plotfit'};

 net.trainParam.epochs =500; % Maximum number of epochs

to train. The default value is 1000.

 net.trainParam.goal =0;%1e-16; %Performance goal. The

default value is 0.

 net.trainParam.time =300; %Maximum time to train in

seconds. The default value is inf.

 net.trainParam.min_grad =0;%1e-30; %Minimum performance

gradient. The default value is 1e-6.

 net.trainParam.max_fail =10; %Maximum validation

failures. The default value is 6.

 net.trainParam.mu =1e-3; %Marquardt adjustment

parameter. The default value is 0.005.

58

 net.trainParam.sigma =1e-5; %Determine change in weight

for second derivative approximation. The default value is

5.0e-5.

 net.trainParam.lambda =1e-5; %Parameter for regulating

the indefiniteness of the Hessian. The default value is

5.0e-7.

 % net.trainParam.lr=0.05; %0.01 Learning rate

 % net.trainParam.delt_inc=1.5; %1.2 Increment to

weight change

 % net.trainParam.delt_dec=0.5; %0.5 Decrement

to weight change

 % net.trainParam.delta0=0.05; %0.07 Initial

weight change

 % net.trainParam.deltamax=100; %50.0 Maximum

weight change

 %% Train neural network

 %

ew=(t==[1;0;0;0])*1+(t==[0;1;0;0])*0.1+(t==[0;0;1;0])*0.3+(t

==[0;0;0;1])*0; %setting weight

 [net,tr] = train(net,X,t);

 % [net,tr] = train(net,X,t,[],[],ew); %training with

weight

 %% Test the Network

 y = net(X);

 e = gsubtract(t,y);

 performance(i) = perform(net,t,y);

 % performance(i) = perform(net,t,y,ew); %performance

with weight

 tind = vec2ind(t);

 yind = vec2ind(y);

 percentErrors(i) = sum(tind ~= yind)/numel(tind);

 %% Recalculate Training, Validation and Test Performance

 trainPerformance =

perform(net,t(:,tr.trainInd),y(:,tr.trainInd));

 valPerformance =

perform(net,t(:,tr.valInd),y(:,tr.valInd));

 testPerformance =

perform(net,t(:,tr.testInd),y(:,tr.testInd));

59

 %% Performance metrics

 o = double(y>=max(y));

 tt=t(:,tr.testInd); % test target

 ot=o(:,tr.testInd); % test output

 for j=1:4

 tp=length(find(tt(j,:)==1 & ot(j,:)==1)); %true

positive

 fn=length(find(tt(j,:)==1 & ot(j,:)==0)); %false

negative

 tn=length(find(tt(j,:)==0 & ot(j,:)==0)); %true

negative

 fp=length(find(tt(j,:)==0 & ot(j,:)==1)); %false

positive

 acc(i,j)=(tp+tn)/(tp+tn+fp+fn); % accuracy

 rec(i,j)=tp/(tp+fn); % recall

 prc(i,j)=tp/(tp+fp); % precision

 f1(i,j)=(2*rec(i,j)*prc(i,j))/(rec(i,j)+prc(i,j)); %

F measure

 Ftrain(i,j)=(2*sum(t(j,tr.trainInd)==1 &

o(j,tr.trainInd)==1))/(sum(t(j,tr.trainInd)==1)+

sum(o(j,tr.trainInd)==1)); % F measure of training

 Ftest(i,j)=(2*sum(t(j,tr.testInd)==1 &

o(j,tr.testInd)==1))/(sum(t(j,tr.testInd)==1)+

sum(o(j,tr.testInd)==1)); % F measure of testing

 end

 clear net

end

prc=fillmissing(prc,'constant',0);

f1=fillmissing(f1,'constant',0);

et=toc

elapsed_time=[elapsed_time;et];

accuracy=[accuracy;k mean(acc);k std(acc)];

recall=[recall;k mean(rec);k std(rec)];

precision=[precision;k mean(prc);k std(prc)];

f1_measure=[f1_measure;k mean(f1);k std(f1)];

f1_max=[f1_max;k max(f1)];

60

perf=[k mean(performance),k mean(percentErrors);k

std(performance),k std(percentErrors)];

Ftot=[k mean(Ftrain),k mean(Ftest); k std(Ftrain),k

std(Ftest)];

%% Save results to xl file

filename='step2.xlsx';

range='B33'; %3,15,27,39 %3,5,7,9

writematrix(accuracy,filename,'Sheet','Accuracy','Range',ran

ge)

writematrix(recall,filename,'Sheet','Recall','Range',range)

writematrix(precision,filename,'Sheet','Precision','Range',r

ange)

writematrix(f1_measure,filename,'Sheet','F1-

Measure','Range',range)

writematrix(perf,filename,'Sheet','Performance','Range',rang

e)

writematrix(Ftot,filename,'Sheet','F1 total','Range',range)

writematrix(elapsed_time,filename,'Sheet','Elapsed

Time','Range',range)

61

rearrange_dataset.m

clear all

%% load data

load('myFeats-v3.mat')

%% under-sample Normal class by 6

idxN = find(ismember(reference_tab,'N'));

idxNN = [];

for i=1:6:size(idxN)

 idxNN = [idxNN;idxN(i)];

end

features(idxN(ismember(idxN,idxNN)==0),:)=[];

reference_tab(idxN(ismember(idxN,idxNN)==0))=[];

%% under-sample Others class by 3

idxO=find(ismember(reference_tab,'O'));

idxOO = [];

for i=1:3:size(idxO)

 idxOO = [idxOO;idxO(i)];

end

features(idxO(ismember(idxO,idxOO)==0),:)=[];

reference_tab(idxO(ismember(idxO,idxOO)==0))=[];

%% Feature Selection

A=features;

features=features{:,:};

in = features;

Y = reference_tab;

%% Rank features by importance %ReliefF

[idxR,scoreR] = relieff(in,Y,10);

figure(1);bar(scoreR(idxR))

diffR=-diff(scoreR(idxR));

new_idxR=idxR(1:min(find(diffR<mean(diffR)))-1);

FeatR=in(:,new_idxR);

namesR=A(1,new_idxR).Properties.VariableNames;

62

%% mRMR

[idxM,scoreM] = fscmrmr(in,Y);

figure(2);bar(scoreM(idxM))

diffM=-diff(scoreM(idxM));

new_idxM=idxM(1:min(find(diffM<=mean(diffM)))-1);

FeatM=in(:,new_idxM);

namesM=A(1,new_idxM).Properties.VariableNames;

%% Chi2

[idxC,scoreC] = fscchi2(in,Y);

idxInf = find(isinf(scoreC));

figure(3);bar(scoreC(idxC))

hold on

bar(scoreC(idxC(length(idxInf)+1))*ones(length(idxInf),1))

legend('Finite Scores','Infinite Scores')

hold off

new_idxC=idxInf;

FeatC=in(:,new_idxC);

namesC=A(1,new_idxC).Properties.VariableNames;

%% Save data to xl file

save('3Features_balanced1-

v3.mat','FeatR','FeatM','FeatC','reference_tab');

63

features_selection.m

close all

clear all

%% prepare data

load('myFeats-v3.mat')

A=features;

features=features{:,:};

in = features;

Y = reference_tab;

%% Rank features by importance %ReliefF

[idxR,scoreR] = relieff(in,Y,10);

figure(1);bar(scoreR(idxR))

diffR=-diff(scoreR(idxR));

new_idxR=idxR(1:min(find(diffR<mean(diffR)))-1);

FeatR=in(:,new_idxR);

namesR=A(1,new_idxR).Properties.VariableNames;

%% Rank features by importance %mRMR

[idxM,scoreM] = fscmrmr(in,Y);

figure(2);bar(scoreM(idxM))

diffM=-diff(scoreM(idxM));

new_idxM=idxM(1:min(find(diffM<=mean(diffM)))-1);

FeatM=in(:,new_idxM);

namesM=A(1,new_idxM).Properties.VariableNames;

%% Rank features by importance %Chi2

[idxC,scoreC] = fscchi2(in,Y);

idxInf = find(isinf(scoreC));

figure(3);bar(scoreC(idxC))

hold on

bar(scoreC(idxC(length(idxInf)+1))*ones(length(idxInf),1))

legend('Finite Scores','Infinite Scores')

hold off

new_idxC=idxInf;

FeatC=in(:,new_idxC);

namesC=A(1,new_idxC).Properties.VariableNames;

%% Save data to xl file

save('3Features-

v3.mat','FeatR','FeatM','FeatC','reference_tab');

