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ABSTRACT

Various Non-negative Matrix factorization (NMF) based methods add new terms to the cost function
to adapt the model to specific tasks, such as clustering, or to preserve some structural properties in
the reduced space (e.g., local invariance). The added term is mainly weighted by a hyper-parameter
to control the balance of the overall formula to guide the optimization process towards the objective.
The result is a parameterized NMF method. However, NMF method adopts unsupervised approaches
to estimate the factorizing matrices. Thus, the ability to perform prediction (e.g. classification) using
the new obtained features is not guaranteed. The objective of this work is to design an evolutionary
framework to learn the hyper-parameter of the parameterized NMF and estimate the factorizing
matrices in a supervised way to be more suitable for classification problems. Moreover, we claim
that applying NMF-based algorithms separately to different class-pairs instead of applying it once
to the whole dataset improves the effectiveness of the matrix factorization process. This results
in training multiple parameterized NMF algorithms with different balancing parameter values. A
cross-validation combination learning framework is adopted and a Genetic Algorithm is used to
identify the optimal set of hyper-parameter values. The experiments we conducted on both real and
synthetic datasets demonstrated the effectiveness of the proposed approach.
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1 Introduction

The NMF (Non-negative matrix factorization) method was pioneered by Lee and Seung Lee and Seung [1999] to
decompose a non-negative matrix into two non-negative matrices. Moreover, since the dimensions of the factorizing
matrices are much smaller than those of the original matrix, the NMF can also be considered as a low rank approximation
method just like the PCA and the SVD. However, the strength of NMF lies in its ability to better infer the latent structure
of the data. This is what makes it a powerful technique for solving complex problems. Moreover, NMF has a relationship
with k-means clustering Huang et al. [2021], spectral clustering Lu et al. [2014], probabilistic latent semantic indexing
(the most used technique in information retrieval) Ding et al. [2006a] and sparse data transformation Hoyer [2004]. Thus,
it can be effectively adapted to many problems in machine learning, in general and data clustering, data representation
and dimensionality reduction, in particular. Usually, performing this adaptation consists of adding a new term(s) to
the original NMF cost function to impose certain constraints on the factorizing matrices and/or adding some penalty
terms to direct the optimization process toward intended objective. For instance, Cai et al. [2010] adds to NMF a
neighborhood graph based penalty term to preserve the pairwise closeness of the data points in the reduced space;
similarly, Ahmed et al. [2021] adds a term to preserve the geometric data structure in the reduced space which is
modeled by a minimum spanning tree calculated from the neighborhood similarity graph; Ding et al. [2006b] adds
terms to enforce orthogonality of the factorizing matrices to perform data clustering in the reduced space; Hedjam
et al. [2021] adds a term to preserve a feature relationship between the original data and the reduced data in order to
freely adjust the centroids of computed clusters. Although adding a penalty term to NMF has been shown to be very
beneficial, controlling balancing factor (a hyper-parameter) between the NMF cost function and the added term still
remains a problem. Usually, the hyper-parameter is either adjusted experimentally or calculated analytically (e.g. using
Lagrangian multipliers). Let’s define these kind of NMF-based methods as parameterized NMF methods.

Moreover, the original NMF and the NMF-based methods mentioned above adopt unsupervised approaches to estimate
the factorizing matrices. Thus, the ability to perform prediction (e.g., classification) using the new dimensions (i.e.,
features) is not guaranteed. To solve this problem, some works have been proposed to supervise the NMF by including
the data labels when calculating the factorizing matrices. There are two categories of supervised NMF methods. The
first category uses the principle of linear discriminant analysis to improve the prediction performance in reduced space
Xue et al. [2006], Ma et al. [2021], while the second category integrates the data labels in the loss function Leuschner
et al. [2019], Peng et al. [2021].

In this article, in-line with the second category methods, we propose a new supervised learning NMF-based framework.
The motivation is that through the literature, NMF has been shown to be an outstanding method for extracting relevant,
useful and meaningful reduced non-negative features and, if supervised by including labels in the factorization process,
can be used as a good predictor, or can be used to successfully assist subsequent classifiers make better predictions.
Therefore, we want to demonstrate that it is possible to learn the best factorizing matrices (i.e., coefficient matrix or
the latent bases that represent the training data, and the basis matrix in which the data are represented) by finding the
best hyper-parameter for a parameterized NMF method using a training-validation framework (supervised learning)
empowered by the Genetic algorithm and the majority voting rule. As a result, the learned basis matrix will be used as a
projection matrix to transform future samples (test samples) for subsequent use. In the training phase, the goal is to
estimate the optimal hyper-parameter along with the factorizing matrices. Based on the new representation of training
data, classifiers can be built and learned. In the testing phase, the test data is first represented by the latent bases via
solving a pseudo-inverse problem. Then it is fed to the learned classifier to predict its label. To validate the concept
described above, two parameterized NMF methods are analyzed, GNMF Cai et al. [2010], and FR-NMF Hedjam et al.
[2021].

In addition to the framework described above, we have also proposed a new NMF-based combination learning algorithm,
designed to solve a multi-class classification problem. The proposed algorithm is based on the hypothesis that supervised
NMF works better with fewer classes. In other words, NMF can produce better latent bases when the number of classes
is small. The experiments conducted in this work support this hypothesis; i.e., the higher the number of classes, the
lower the classification performance and vice versa. Therefore, we proposed to define the optimal factorizing matrices
along with the hyper-parameter by applying a parameterized NMF algorithm separately to different class-pairs instead
of applying it once to the whole dataset. The proposed algorithm consists of the following steps: First, divide the main
dataset into multiple subsets, where each subset is related to two classes. Note here that the order of the classes in each
class-pair does not matter. Second, estimate two factorizing matrices and one hyper-parameter for each class-pair. Third,
since a unique parameter may not be suitable to all class-pairs, use Genetic Algorithm to identify the best combination
of hyper-parameters that provides the best overall classification performance. A GA can approximates the solution
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of numerically complex problems faster and more efficiently. It has been used to solve complex problems such as
clustering and forecasting scenarios Maulik and Bandyopadhyay [2000]. This method searches for viable solutions
in a particular area. Simply, a new generation with updated objective values is extracted from a randomly generated
candidate. This algorithm is repeated until a satisfactory result is obtained. The prediction of the labels of the training
data and the validation of the classification performance are carried out according to a cross-validation and majority
voting scheme which will be described in more detail in Section 3. To our knowledge, no similar learning framework
has been proposed in the literature.

2 NMF and some parameterized NMF-based methods

Formally, let X ∈ Rm×n be a matrix of n columns representing the nonegative samples and m rows representing their
features, and r < {m,n}. NMF aims to find non-negative matrices W ∈ Rm×r and H ∈ Rr×n that minimize the
following cost-function:

f(W,H) =
1

2
‖X−WH‖2F , (1)

where ‖.‖2F represents the Frobenius norm. The model in Eq. (1) can also be formulated as an optimization problem of
the form:

min
W,H>0

‖X−WH‖2F = min
W,H>0

∑
i,j

(X−WH)2ij , (2)

Using the multiplicative update rules for non-negative optimization system proposed by Lee and Seung Lee and Seung
[1999], H and W are updated by:

H(t+1) ← H(t) � W(t)>X
W(t)>W(t)H(t)

, (3)

W(t+1) ←W(t) � XH(t+1)>

W(t)H(t+1)H(t+1)>
, (4)

where � stands for the element-wise matrix product, and A
B stands for the element-wise matrix division. H(0) and W(0)

are set to random values and the updates are repeated until W and H become stable.

2.1 Graph regularized NMF (GNMF)

The GNMF method Cai et al. [2010] adds, to the cost function of NMF, a penalty term based on a similarity graph
to preserve the neighborhood structure of the data points in the reduced space. The contribution of the penalty term
is weighted by a hyper-parameter λ. The resulting model is therefore suitable for clustering on a manifold. GNMF
minimizes the fllowing objective function:

min
W,H>0

‖X−WH‖2F + λTr(HLH>), (5)

where L is called the Laplacian matrix computed as L = D−W, and D is a diagonal matrix with Djj =
∑
l Wjl. The

derivation of this optimization problem leads to the following updating rules:

W(t+1) ←W(t) � XH(t)>

W(t)H(t)H(t)>
, (6)

H(t+1) ← H(t) � X>W(t+1) + λW(t+1)H(t)>

H(t)>W(t+1)>W(t+1) + λDH(t)>
. (7)

2.2 Feature relationship-preservation NMF (FR-NMF)

FR-NMF Hedjam et al. [2021] adds, to the NMF cost function, a penalty term that is equivalent to imposing an
orthogonality constraint on the coefficient matrix H. The two terms of the model are then balanced by a hyper-parameter
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λ to allow a scale relationship between the scatter of data points and that of cluster centroids. FR-NMF minimizes the
following objective function:

min
W,H≥0

1

2
‖X−WH‖2F +

1

2
‖XX> − λWW>‖2F , (8)

where W ∈ Rm×k and H ∈ Rk×n are respectively the basis and coefficient matrices, and λ is a positive scalar to be
defined by experiment in this work. The multiplicative update rule leads to:

H(t+1) ← H(t) � W(t)>X

W(t)>W(t)H(t)
, (9)

W(t+1) ←W(t) � XH(t+1)> + λXX>W(t)

W(t)H(t+1)H(t+1)> + λ2

2 W(t)W(t)>W(t)
. (10)

3 Proposed learning framework

First, let’s define some formal notations that will be used throughout the paper:

- X ∈ Rd×n: a matrix of n samples of d features each.
- m: number of classes.
- Ci=1..m: the ith class.
- y ∈ {0, 1, ..,m}n: label vector of the samples in X.

- x ∈ Rd×1: a given sample.
- y: class label of x.
- {St=1..T }: T possible subsets, where each subset is composed of samples from two classes Ci and Ct; i 6= j;

i.e., K = m(m− 1)/2.
- pt: the parameter of the NMF-based algorithm when applied to St.
- (p1, .., pt, ..pT ): a chromosome of parameters.
- Pop: a population of chromosomes.

As mentioned in the introduction section, in this work, two parameterized NMF algorithms are considered, FR-NMF
Hedjam et al. [2021] and GNMF Cai et al. [2010]. The goal is to fine-tune, for each algorithm, its hyper-parameter
so that we can generate the best factorizing matrices with relevant latent data for subsequent classification tasks.
More specifically, learning the optimal parameter is achieved through a training-validation-test process. During the
training/validation phase, the task is to estimate the optimal hyper-parameter along with the factorizing matrices; i.e.,
coefficient matrix (latent bases that represent the training data), and the basis matrix (new space in which the data
are represented). Based on the new representation of training data, classifiers can be built and learned. The k-NN
(k-Nearest Neighbor with k=1) algorithm is used in this letter. Other classifiers like SVM, MLP, pre-trained CNN,
will be investigated in a future more extended work. The optimal hyper-parameter obviously leads to maximizing the
classification accuracy of the validation set. The cross-validation algorithm is used to estimate the true classification
accuracy. In the testing phase, the test data is first represented by the latent bases via solving a pseudo-inverse problem,
and is then fed to the learnt classifier to predict its label.

Two factors can affect the effectiveness of any matrix factorization method, including NMF: the number of classes
available and the overlap between classes. In other words, the calculation of the basis vectors of the reduced space is
less complex with fewer less-overlapped classes, the thing we can validate by the results obtained from the different
experiments carried out in this work. This motivated us to propose a new NMF learning framework in which, instead
of training a single NMF-based algorithm for all classes at once, it would be better to train one on each class-pair
St and decide the label of the validation (and test) samples based on a combination process (e.g. majority voting
rule). Considering that the parameterized NMF algorithm uses one hyper-parameter, applying it to each St involves
learning a vector of K hyper-parameters, K basis matrices W , and K coefficient matrices H. In other words, for
each subset St, the process requires learning pt, Wt, and Ht. Since the distributions of the subset are not necessarily
similar, pt=1..T may not necessarily have the same value. Consequently, the matrix factorization of each subset leads to
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different factorizing matrices and therefore to different values of pt. Identifying the optimal hyper-parameter vector
P = (p1, .., pt, .., pT ) is a complex problem and cannot be solved analytically (e.g., combinatorial if pt are integers).
We therefore propose to solve it by using a meta-heuristic optimization algorithms. In our work, the Genetic Algorithm
is used.

To summarize, the learning framework consists of the following steps:

3.1 Learning of the hyper-parameter vector and factorizing matrices

1) divide the training part of X into training/validation folds.

2) each training fold is divided into K subsets S = {St=1..T }, where each St is composed of two classes, Ci and
Ct, with i 6= j. The total number of subsets is equal to m!

2(m−2)! . The division by 2 is due to the fact that the
order of the classes in each subset does not matter.

3) for each subset St, compute Wt and Ht using the NMF-based algorithm considered fed by its parameter pt.

Wt,Ht ← AlgoNMF (St, pk), (11)

where AlgoNMF () is FR-NMF or GNMF. The vector P = (p1, .., pt, .., pT ) is initialized randomly.

4) for each sample x in the validation fold, compute the corresponding latent sample (data) by solving pseudo-
inverse problem:

h← (W>t Wt)
−1W>t x, (12)

then predict its label using the k-Nearest Neighbor (k-NN ) algorithm based on Ht:

l← kNN(h,Ht, yt). (13)

In this letter we have used 1-NN classifier. Therefore, the label of the first nearest sample from Ht to h is
assigned to x.

5) Since 3) and 4) are repeated for all the St,∀t = 1..T , the process ends up with a list Lt of labels for the same
sample x. The final label of x can be identified via a majority voting rule; i.e., the dominant label will be
assigned to it.

6) Compute the accuracy acc for the current validation fold.

7) Repeat 2) to 6) for all the training/validation folds, and compute the average accuracy accavg .

The process from 1) to 7) is performed for one specific parameter vector P = (p1, .., pt, .., pT ). The optimal parameter
vector P̂ that maximizes the average accuracy accavg is searched using the Genetic algorithm. Since P is a real-valued
vector, the continuous GA is used. The parameter setting of GA will be described in Section 4.2. We assume that the
best factorizing matrices Ĥt and Ŵt;∀t = 1..T are those corresponding to P̂ . Algorithm 1 describes the training phase
of the proposed framework.

3.2 Testing phase

The prediction of the label of a given test sample is carried out in the same way as for the validation sample during
the training phase. The optimal Ĥt and Ŵt;∀t = 1..T will be used to predict the list of labels for this test sample by
applying Eqs. (12) and (13), and the majority voting rule is then applied to decide on its final label as describe in step 5)
above.

Figure 1 illustrates the overall training phase of the proposed parameterized NMF learning framework.

4 Experimental results and evaluation

The proposed supervised class-pairwise NMF learning framework (named cNMF) is evaluated on real-life and synthetic
datasets using two parameterized NMF algorithms (FR-NMF and GNMF). To demonstrate its effectiveness, two
experiments are carried out. In the first experiment, the parameterized NMF algorithms are trained and tested based on
all classes at once. Let’s name this strategy as unique parameterized NMF (uNMF). In the second experiments they are
trained and tested on each class-pair separately as described above. First let’s describe the datasets considered, and the
parameter setting of each framework part.
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Algorithm 1: Supervised Class-pairwise Parameterized NMF
Input:
− (X, y): labeled dataset, with features scaled in [0,1];

Output:
− P̂ = (p̂1, .., p̂k, .., p̂K ]): optimal parameter chromosome;
− {(Ŵ, Ĥ)t=1..T }: set of optimal factorizing matrices of subsets;

1 initialization;
2 Accchromo ← [] #empty list of chromosome accuracies (fitnesses);
3 Initialize the population of chromosomes Pop randomly;
4 while accavg doesn’t improve or max itration is not achieved do
5 for each chromosome P = (p1, .., pt, ..pT ) in Pop do
6 Accvalid ← [] # empty list of accuracies of validation folds;
7 # Cross-validation data split;
8 for each cross-validation split do
9 # training: estimate factorizing matrices using current training fold;

10 for each St do
11 Wt,Ht ← AlgoNMF (St, pk);

12 # validation: using validation fold;
13 T : list of true labels of current validation fold;
14 L← []: empty list of predicted labels of current validation fold;
15 for each sample x in curreent validation fold do
16 Lt ← [] # list of labels of x;
17 for each (H,W)t do
18 # compute the latent data h that represents x;
19 h← (W>t Wt)

−1W>t x # pseudo-inverse reconstruction;
20 # predict the label of h;
21 l← kNN(h,Ht, yt);
22 Lt.append(l);

23 # majority voting labeling;
24 l←MajV oting(Lt);
25 L.append(l)

26 acc← Accuracy(L, T );
27 Accvalid.append(acc)

28 # compute average accury for all validation folds;
29 accavg ← average(Accvalid);
30 Accchromo.append(accavg)

31 Chromosome selection step;
32 Chromosome cross-over step;
33 Chromosome mutation step

34 The chromosomes of the final population (generation) are sorted according to their fitnesses, and the chromosome with the
highest fitness is selected as the optimal, ie., P̂ = (p̂1, .., p̂k, .., p̂K). The corresponding {(Ŵ, Ĥ)t=1..T } are selected as well.
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Figure 1: Class-pairwise parameterized NMF learning framework (cNMF). Example of 3-class problem.

4.1 Data description

Four (4) real-life datasets are used to evaluated the performance of the framework. The first dataset is the Columbia
Object Image Library (COIL20)1. It consists of 1440 images of 20 objects (with 72 poses each). Each image is of
128×128 grayscale pixels leading to 1056784 features. The second dataset is the Olivetti face dataset (Oface), which
contains 400 face images divided into 40 classes. Each class holds 10 face images of one distinct subject. Each image is
of 64× 64 pixels leading to 4096 features. To reduce the time complexity we selected 60 best features for COIL20 and
Oface datasets using SlectKBest algorithm3. The third dataset is the Optical Recognition of Handwritten Digits dataset,
which consists of 1797 images divided into 10 classes. The size of the images is 8× 8 pixels leading to 64 features
each. The fourth dataset is the Wine dataset, which consists of 178 samples divided into 3 classes. The dimension of the
samples is 13 real-valued features. The 2nd, 3rd and 4th datasets can be downloaded here3.

The last set of synthetic datasets consists of 15 datasets generated using the make_blob module from SciKit Python
library. Blob-like datasets are controlled by the number of clusters (cl), the number of features (f ) and the standard
deviation of clusters (σ). Each dataset contains 1000 samples and σ is set to 1. For reproducibility purposes, the Python
statements to generate Blobs datasets can be found in the footnote below4. Table 1 describes the datasets considered in
this work in terms of number of classes (cl) and number of features (f ).

Table 1: Description of the datasets considered.

Datasets Wine Digits COIL20 Ofaces
cl 3 10 20 40
f 13 64 60 60
Datasets C3F10 C4F10 C6F10 C8F10 C10F10
cl 3 4 6 8 10
f 10 10 10 10 10
Datasets C3F20 C4F20 C6F20 C8F20 C10F20
cl 3 4 6 8 10
f 20 20 20 20 20
Datasets C3F40 C4F40 C6F40 C8F40 C10F40
cl 3 4 6 8 10
f 40 40 40 40 40

4.2 Parameter setting

The parameters of the framework are: the parameter vector (p1, p2, .., pT ) and the GA operators (selection, cross-over
and mutation). The range of the parameters pt;∀t is set to [0..1] (continuous chromosomes). The chromosomes
selection method used is the selection by tournament, the cross-over method is the one point mate method with a

1https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
3https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
4datasets.make_blobs(center_box=(1,5),n_samples=1000,centers=c,n_features=f, cluster_std=1,random_state=0)
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probability set to 0.2, the mutation probability is set to 0.05, the population size is set to 10 chromosomes, and the
number of generations (iterations) is set to 20. In this work, the best GA setting is defined experimentally using the
DEAP (Distributed Evolutionary Algorithms in Python) library. The description of the GA operators used in this work
can be found here5.

4.3 Experimental results

For each dataset and for each parameterized NMF algorithm (FR-NMF or GNMF), we have i) applied cNMF and
uNMF for the following lower ranks r = [2, 4, 6, 8, 10], ii) applied the classifier kNN to each lower ranked dataset, and
finally iii) calculated the mean classification accuracy (meanAcc) over all the ranks considered. Tables 2 and 4 show
meanAcc of cNMF and uNMF for GNMF and FR-NMF respectively using the real-life datasets, and Tables 3 and
5 show the same using the synthetic datasets. We can see that cNMF outperforms uNMF in all the cases. In some
datasets like Digits, the mean accuracy gap is remarkable. This means that applying FR-NMF or GNMF according to
the cNMF strategy identifies relevant latent bases that best represent data in a reduced space and, therefore, leading to
better classification performance.

Table 2: Classification average accuracy (meanAcc) for GNMF on real-life datasets.

COIL20 Digits OFaces Wine
Method cNMF uNMF cNMF uNMF cNMF uNMF cNMF uNMF
meanAcc 0.79 0.74 0.92 0.75 0.61 0.50 0.94 0.94

Table 3: Classification average accuracy (meanAcc) for GNMF on synthetic datasets.

f 10 20 40
methods cNMF uNMF cNMF uNMF cNMF uNMF
cl = 3 0.77 0.71 0.99 0.95 1.00 0.99
cl = 4 0.70 0.59 0.99 0.96 1.00 0.95
cl = 6 0.63 0.55 0.98 0.92 1.00 0.93
cl = 8 0.67 0.57 0.97 0.84 1.00 0.91
cl = 10 0.70 0.51 0.95 0.80 1.00 0.87

Table 4: Classification accuracy (meanAcc) for FR-NMF on real-life datasets.

COIL20 Digits OFaces Wine
Method cNMF uNMF cNMF uNMF cNMF uNMF cNMF uNMF
meanAcc 0.58 0.43 0.89 0.63 0.52 0.41 0.92 0.93

Table 5: Classification accuracy (meanAcc) for FR-NMF on synthetic datasets.

f 10 20 40
methods cNMF uNMF cNMF uNMF cNMF uNMF
cl = 3 0.77 0.80 0.99 0.95 1.00 1.00
cl = 4 0.76 0.71 0.99 0.96 1.00 0.95
cl = 6 0.70 0.67 0.98 0.92 1.00 0.97
cl = 8 0.73 0.67 0.97 0.88 1.00 0.90
cl = 10 0.69 0.58 0.92 0.80 1.00 0.84

For visual analysis we plotted the meanAcc of cNMF and uNMF for each dataset as shown in Figures 2 and 3. In order
to visually simplify the analysis of the results in each graph, datasets are sorted according to the number of classes they
contain from left (smallest) to right (largest). From the figures, the following observations can be drawn:

i) in general, the classification performance according to uNMF strategy is inversely proportional to the number
of classes in a dataset. This is well indicated by the rapid decrease of the red bars in each graph (from left
to right). This finding supports our hypothesis stated in Section 3 regarding the the impact of the number of
classes on the matrix factorization task.

ii) cNMF is less affected than uNMF by the number of classes. The corresponding meanAcc bars show a
smooth decrease from left to right in each graphic. In some cases the performance is not influenced at all (see
graphics (d) in Figures 2 and 3). This means that applying parameterized NMF algorithms according to cNMF
(class-pairwise) strategy improves the performance of the subsequent classification tasks.

iii) for synthetic datasets the classification performance improves as the number of data features increases. This
maybe due to the well defined data distribution (i.e., Gaussian).

5https://deap.readthedocs.io/en/master/api/tools.html#operators
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(a) (b)

(c) (d)

Figure 2: Graphical representation of the meanAcc of GNMF on real-life datasets (a) and synthetic datasets (b-d).
Trend lines (dotted) are added for better analysis.

(a) (b)

(c) (d)

Figure 3: Graphical representation of the meanAcc of FR-NMF on real-life datasets (a) and synthetic datasets (b-d).
Trend lines (dotted) are added for better analysis.

iv) on average, the performance of cNMF and that of uNMF on Wine dataset seem to be similar. However, cNMF
performs better on small rank values r while uNMF outperforms cNMF for large values of r. Another possible
reason is because Wine dataset has only three classes with few number of samples.

In order to understand in more details the difference between the two strategies, cNMF and uNMF, we investigated
the classification accuracy gap between them for each low rank value r. Let’s define Gap = meanAcccNMF −
meanAccuNMF for one dataset, and let’s define meanGap as the average gap over all the datasets considered. Figures
4 (a) and (b) show meanGap on real-life and synthetic datasets respectively for each row r. We can notice that cNMF
greatly outperforms uNMF for the smallest r. A significant gap of 35% for r = 2 is obtained important. This indicates
the usefulness of the proposed approach in particular for applications requiring smaller data dimension (e.g., data
visualization).

(a) (b)

Figure 4: Classification accuracy gap (meanGap) between cNMF and uNMF strategies on real-life datasets (a) and on
synthetic datasets (b). The dotted line represent the trending lines.

Figure 5 shows the evolution of fitness with the number of generations of the genetic algorithm on (a) a real-life dataset
(e.g., Digits) and (b) a synthetic dataset (e.g., C6F20). We can see that over generations, new relevant populations are
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sought after and the fitness improves. Experimentally, we have found that fitness does not change significantly after 20
generations for all the datasets considered in this work.

(a) (b)

Figure 5: GA evolution. Fitness vs number of generations on (a) real-life dataset (e.g., Digits) and on (b) synthetic
dataset (e.g., C6F20).

5 Conclusion

This work presents a novel learning framework designed to adapt any parameterized NMF algorithm (NMF with
additional term controlled by a parameter) for classification problems. Given a labeled dataset, the basic idea is to
train a parameterized NMF algorithm in the aim of identifying the optimal value of the parameter. This value should
produce factorizing matrices that maximize the subsequent classification tasks. However the main novelty of the
proposed framework consists of training the parameterized NMF algorithm in an evolutionary manner on each class-pair
separately and then combining the predicted labels using the combining scheme described in Section 3 and illustrated
in Figure 1. This was based on the hypothesis that the matrix factorization process is impacted by the number of
classes. The higher the number the classes is the more difficult to identify the factorizing matrices. We have validated
this hypothesis experimentally and found that the new combination learning strategy is more effective. In order to
demonstrate the effectiveness of the class-pairwise NMF learning strategy, we considered two parameterized NMF
algorithms, GNMF and FR-NMF. In other words, we have applied each of them according to the uNMF strategy where
each algorithm is applied on the entire dataset (all classes) at once, and also according to cNMF where it is applied to
each pair of classes, and finally we have analyzed the difference between the two strategies in terms of classification
performance obtained based on real-life and synthetic datasets. The strategy cNMF is found more effective. The
advantage of the framework is that it may use: i) any parameterized NMF algorithm and be extended to learning
more than one parameter, ii) any kind of classifier (instead of kNN) to optimize the parameter and the factorizing
matrices, iii) any kind of label aggregation strategy (instead of majority voting rule). We believe that NMF, as an
outstanding feature extractor, when supervised and trained, can discover latent data more suitable for classification
tasks. It is also easy to implement and understand (as illustrated in Figure 1). The downside is that a higher number of
classes makes the framework learning process more time demanding because it requires repeating the learning process

m!
2(m−2)! =

m(m−1)
2 times.

In a more extended future work, we will integrate supervised parameterized NMF with other classifiers like SVM, MLP
and CNN, and evaluate them on other kinds of datasets. We will also evaluate the framework using other parameterized
NMF methods.
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