Far East Journal of Theoretical Statistics
© 2023 Pushpa Publishing House, Prayagraj, India
http://www.pphmj.com

ON THE REGRESSION ESTIMATION FROM $\widetilde{\rho}$-MIXING SAMPLES

Mounir Arfi
Department of Statistics
College of Science
Sultan Qaboos University
P.O. Box $50 \mathrm{Al}-\mathrm{Khod}$
Postal Code No: 123
Muscat, Sultanate of Oman
e-mail: arfi@squ.edu.om
mounir.arfi@gmail.com

Abstract

We give the rate of the uniform convergence for the kernel estimate of the regression function over a sequence of compact sets which increases to \mathbb{R}^{d} when n grows to infinity and the observed process is $\tilde{\rho}$-mixing. The used estimator for the regression function is the kernel estimator proposed by Nadaraya [10] and Watson [12].

Received: October 19, 2022; Revised: November 13, 2022; Accepted: December 15, 2022
2020 Mathematics Subject Classification: 62G05, 62G08.
Keywords and phrases: regression, kernel estimate, $\tilde{\rho}$-mixing.
How to cite this article: Mounir Arfi, On the regression estimation from $\tilde{\rho}$-mixing samples,
Far East Journal of Theoretical Statistics 67 (2023), 1-14.
http://dx.doi.org/10.17654/0972086323001
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let $\left(X_{t}, Y_{t}\right)_{t} \in \mathbb{N}$ be a strictly stationary process, where $\left(X_{t}, Y_{t}\right)$ take values in $\mathbb{R}^{d} \times \mathbb{R}$ and distributed as (X, Y). Suppose that a segment of data $\left(X_{t}, Y_{t}\right)_{t=1}^{n}$ has been observed.

We are interested in the study of the convergence rate for a kernel estimate of the regression function, known as

$$
r(x)=E\left(Y_{t} \mid X_{t}=x\right), \quad t \in \mathbb{N} .
$$

A natural estimator for the function $r(\cdot)$ is given by

$$
r_{n}(x)=\frac{\sum_{t=1}^{n} Y_{t} K\left(\frac{x-X_{t}}{h_{n}}\right)}{\sum_{t=1}^{n} K\left(\frac{x-X_{t}}{h_{n}}\right)}, \quad \forall x \in E,
$$

where E stands for the subset $\{x \in \mathbb{R}, f(x)>0\}, f$ being the density of the process $\left(X_{t}\right)$ and $\left(h_{n}\right)$ is a positive sequence of real numbers such that $h_{n} \rightarrow 0$ and $n h_{n}^{d} \rightarrow \infty$, when $n \rightarrow \infty$.
K is a Parzen-Rosenblatt kernel type in the sense of a bounded function satisfying

$$
\int_{\mathbb{R}} K(x) d x=1 \text { and } \lim _{\|x\| \rightarrow \infty}\|x\| K(x)=0 .
$$

Moreover, it is assumed to be strictly positive and with bounded variation.

2. Preliminaries and Assumptions

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space.

Let $\left(X_{t}, t \in \mathbb{N}\right)$ be a sequence of random variables. Then we define

$$
\mathcal{F}_{2}=\sigma\left(X_{t}, t \in S\right), \text { where } S \text { is a subset of } \mathbb{N} .
$$

Therefore, given the σ-algebra \mathcal{B} and \mathcal{R} in \mathcal{F}, let

$$
\rho(\mathcal{B}, \mathcal{R})=\sup \left\{\operatorname{corr}(X, Y), X \in L_{2}(\mathcal{B}), Y \in L_{2}(\mathcal{R})\right\}
$$

where

$$
\operatorname{corr}(X, Y)=\frac{E(X Y)-E(X) E(Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}} .
$$

Bradley [5] introduced the following coefficients of dependence:

$$
\tilde{\rho}(k)=\sup \left\{\rho\left(\mathcal{F}_{s}, \mathcal{F}_{t}\right)\right\}, \quad k \geq 0,
$$

where the supermum is taken over all finite subsets $S, T \subset \mathbb{N}$ such that $\operatorname{dist}(S, T) \geq k$.

Obviously,

$$
0 \leq \tilde{\rho}(k+1) \leq \tilde{\rho}(k) \leq 1, \quad k \geq 0 \quad \text { and } \quad \tilde{\rho}(0)=1 .
$$

Definition 2.1. A random sequence of variables $\left(X_{t}, t \geq 1\right)$ is said to be a $\tilde{\rho}$-mixing sequence if there exists a $k \in \mathbb{N}$ such that $\tilde{\rho}(k)<1$.

Without loss of generality, we may assume that $\left(X_{t}, t \geq 1\right)$ is such that $\tilde{\rho}(1)<1$ (see Bryc and Smolenski [7]).

In the study of $\tilde{\rho}$-mixing sequences, we refer to Bradley $[5,6]$ for the central limit theorem, Bryc and Smolenski [7] for moment inequalities and almost sure convergence, Peligrad and Gut [9], Shixin [11] for almost sure results, Arfi [2] for almost sure convergence of the mode function, and Arfi [3] for an estimation of the hazard function.

We make use of the following assumptions:
A1. The observed process $\left(X_{t}, t \in \mathbb{N}\right)$ is stationary and $\widetilde{\rho}$-mixing.

A2.

$$
\exists \Gamma<\infty, \quad \forall x \in \mathbb{R}^{d}, \quad f(x) \leq \Gamma
$$

and

$$
\exists \gamma_{n}>0 ; \quad \forall x \in C_{n}, \quad f(x) \geq \gamma_{n},
$$

where C_{n} is a sequence of compact sets such that $C_{n}=\left\{x:\|x\| \leq c_{n}\right\}$ with $c_{n} \rightarrow \infty$.

A3. $\exists b \geq 2, \exists M<\infty$ such that $E\left(|Y|^{b}\right)<M$.
A4. $\exists V<\infty, \forall x \in \mathbb{R}^{d}, E\left[(Y-r(x))^{2} \mid X=x\right] \leq V$.
A5. The density f is twice differentiable and its second derivatives are bounded on \mathbb{R}^{d}.

A6. The kernel K is Lipschitz of ratio L_{k}, that is $|K(x)-K(y)| \leq$ $L_{k}\|x-y\|^{k}$.

3. Main Result

Theorem 3.1. Assuming that the assumptions A1 through A6 hold, the function r is Lipschitz, bounded on \mathbb{R}^{d} and that the bandwidth sequence $\left(h_{n}\right)$ satisfies with y_{n} :

$$
n h_{n}^{d} y_{n}^{-1} n^{-\delta}=\infty(\log n), \quad n^{\delta} \gamma_{n}^{-1} \rightarrow 0 \text { and } n^{\delta} \gamma_{n}^{-1} h_{n}^{-d} y_{n}^{-b / 2} \rightarrow 0, \quad n \rightarrow \infty,
$$

where y_{n} is an unbounded and nondecreasing sequence chosen so that

$$
1 \leq y_{n} \leq n / 2 .
$$

If the kernel K is even with $\int z^{2} K(z) d z<\infty$ for $z=\left(z_{1}, \ldots, z_{d}\right)$ and if there exists a constant D such that $\gamma_{n}^{-1} y_{n} n^{\delta} h_{n}^{d}<D$, then

$$
n^{\delta} \sup _{\|x\| \leq c_{n}}\left|r_{n}(x)-r(x)\right|=O(1) \text { a.s. } n \rightarrow \infty .
$$

4. Preliminary Results

For practical reasons, we make the following decomposition:

$$
r_{n}(x)-r(x)=\frac{1}{f(x)}\left\{\left[g_{n}(x)-r(x) f(x)\right]-r_{n}(x)\left[f_{n}(x)-f(x)\right]\right\}
$$

where

$$
g_{n}(x)=\frac{1}{n h_{n}^{d}} \sum_{t=1}^{n} Y_{t} K\left(\frac{x-X_{t}}{h_{n}}\right)
$$

and

$$
f_{n}(x)=\frac{1}{n h_{n}^{d}} \sum_{t=1}^{n} K\left(\frac{x-X_{t}}{h_{n}}\right) .
$$

This leads to

$$
\begin{aligned}
& \sup _{x \in C_{n}}\left|r_{n}(x)-r(x)\right| \\
= & \frac{1}{f(x)}\left\{\sup _{x \in C_{n}}\left|g_{n}(x)-r(x) f(x)\right|+\sup _{x \in C_{n}}\left|r_{n}(x) \| f_{n}(x)-f(x)\right|\right\} .
\end{aligned}
$$

Then if

$$
\sup _{x \in C_{n}}\left|r_{n}(x)\right| \leq y_{n} \text { a.s., }
$$

we obtain

$$
\begin{aligned}
& \sup _{x \in C_{n}}\left|r_{n}(x)-r(x)\right| \\
= & \gamma_{n}^{-1}\left\{\sup _{x \in C_{n}}\left|g_{n}(x)-r(x) f(x)\right|+y_{n} \sup _{x \in C_{n}}\left|f_{n}(x)-f(x)\right|\right\} .
\end{aligned}
$$

Lemma 4.1. Under the hypotheses of Theorem 3.1,

$$
\gamma_{n}^{-1} n^{\delta} \sup _{x \in C_{n}}\left|g_{n}(x)-E g_{n}(x)\right| \rightarrow 0 \text { a.s. } n \rightarrow \infty .
$$

Proof. Because of the possible large values for Y_{t}, we use a truncation technique which consists in decomposing g_{n} in g_{n}^{+}and g_{n}^{-}, where

$$
g_{n}^{+}(x)=\frac{1}{n h_{n}^{d}} \sum_{t=1}^{n} Y_{t} \mathbb{I}_{\left[\left|Y_{t}\right|>y_{n}\right]} K\left(\frac{x-X_{t}}{h_{n}}\right)
$$

and $g_{n}^{-}(x)=g_{n}(x)-g_{n}^{+}(x)$, with an unbounded sequence y_{n} defined as in Theorem 3.1.

We start by showing that

$$
\gamma_{n}^{-1} n_{\|x\| \leq c_{n}} \sup _{\|}\left|g_{n}^{-}(x)-E g_{n}^{-}(x)\right| \rightarrow 0 \text { a.s. } n \rightarrow \infty .
$$

To this end, we write

$$
g_{n}^{-}(x)-E g_{n}^{-}(x)=\sum_{t=1}^{n} \varphi_{t}
$$

with

$$
\varphi_{t}=\frac{1}{n h_{n}^{d}}\left\{Y_{t} \mathbb{I}_{\left[\left|Y_{t}\right| \leq y_{n}\right]} K\left(\frac{x-X_{t}}{h_{n}}\right)-E\left[Y_{t} \mathbb{I}_{\left[\left|Y_{t}\right| \leq y_{n}\right]} K\left(\frac{x-X_{t}}{h_{n}}\right)\right]\right\} .
$$

Therefore, $E\left(\varphi_{t}\right)=0$;
$\left|\varphi_{t}\right| \leq \frac{2 K_{1} y_{n}}{n h_{n}^{d}}=d_{n}$, where K_{1} is an upper bound of K, which permits to write

$$
\begin{aligned}
E\left|\varphi_{t}\right| & \leq \frac{2 \Gamma}{n} E\left|\frac{Y_{t}}{h_{n}^{d}} \mathbb{I}_{\left[\left|Y_{t}\right| \leq y_{n}\right]} K\left(\frac{x-X_{t}}{h_{n}}\right)\right| \\
& \leq \frac{2 \Gamma}{n} \int \frac{E\left(\left|Y_{t}\right| / X_{t}=u\right)}{h_{n}^{d}} K\left(\frac{x-u}{h_{n}}\right) d u .
\end{aligned}
$$

By Schwartz inequality and the assumption A4, we have

$$
E\left|\varphi_{t}\right| \leq \frac{2 \Gamma}{n} \int \frac{\left(r^{2}(u)+V\right)^{1 / 2}}{h_{n}^{d}} K\left(\frac{x-u}{h_{n}}\right) d u \leq \tau_{1} n^{-1},
$$

where τ_{1} is a positive constant.
Now, similar arguments provide

$$
E\left(\varphi_{t}^{2}\right) \leq \frac{2 \Gamma}{n^{2}} \int \frac{\left(r^{2}(u)+V\right)}{h_{n}^{2 d}} K\left(\frac{x-u}{h_{n}}\right) d u \leq v n^{-2} h_{n}^{-d}
$$

where v is a positive constant.
Next, we write

$$
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1} n^{\delta}\left|g_{n}^{-}(x)-E g_{n}^{-}(x)\right|>\varepsilon\right)=\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1} n^{\delta}\left|\sum_{t=1}^{n} \varphi_{t}\right|>\varepsilon\right)
$$

and for $\alpha>1$ and $1 \leq t \leq n$,

$$
W_{n t}=\varphi_{t} \mathbb{I}_{\left(\left|\varphi_{t}\right| \leq n^{\alpha}\right)}, \quad Z_{n t}=\varphi_{t} \mathbb{I}_{\left(\left|\varphi_{t}\right|>n^{\alpha}\right)} .
$$

Then

$$
\begin{equation*}
\left|\sum_{t=1}^{n} \varphi_{t}\right| \leq\left|\sum_{t=1}^{n}\left(W_{n t}-E W_{n t}\right)\right|+\left|\sum_{t=1}^{n} Z_{n t}\right|+\left|\sum_{t=1}^{n} E W_{n t}\right| . \tag{1}
\end{equation*}
$$

We need only to show the following:

$$
\begin{align*}
& \sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1} n^{\delta}\left|\sum_{t=1}^{n}\left(W_{n t}-E W_{n t}\right)\right|>\varepsilon n^{\alpha} / 3\right)<\infty, \tag{2}\\
& \sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1} n^{\delta}\left|\sum_{t=1}^{n} Z_{n t}\right|>\varepsilon n^{\alpha} / 3\right)<\infty, \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\frac{\gamma_{n}^{-1} n^{\delta}\left|\sum_{t=1}^{n} E W_{n t}\right|}{n^{\alpha}} \rightarrow 0, \quad n \rightarrow \infty . \tag{4}
\end{equation*}
$$

We start by showing (2).
The Markov inequality and Chebyshev's inequality lead to

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1} n^{\delta}\left|\sum_{t=1}^{n}\left(W_{n t}-E W_{n t}\right)\right|>\varepsilon n^{\alpha} / 3\right) \\
\leq & c_{1} \sum_{n=1}^{\infty} \sum_{t=1}^{n} \gamma_{n}^{-1} n^{\delta} E\left|W_{n t}\right|^{2} / n^{2 \alpha} \\
\leq & c_{2} \sum_{n=1}^{\infty} \gamma_{n}^{-1} n^{\delta} h_{n}^{-d} n^{-1-2 \alpha}<\infty
\end{aligned}
$$

if we choose

$$
\gamma_{n}=n^{-a} \text { for } a>0 \text { and } h_{n}=n^{-\tau} \text { for }(a+\alpha+\delta) / d<\tau<1 / 2 .
$$

The Borel-Cantelli lemma allows to conclude for (2).
Now, we show (3).
Note that

$$
\left(\left|\sum_{t=1}^{n} Z_{n t}\right|>\varepsilon n^{\alpha} / 3\right) \subset \bigcup_{t=1}^{n}\left(\left|\varphi_{t}\right|>n^{\alpha}\right)
$$

and hence

$$
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1} n^{\delta}\left|\sum_{t=1}^{n} Z_{n t}\right|>\varepsilon n^{\alpha} / 3\right) \leq \sum_{n=1}^{\infty} n P\left(\gamma_{n}^{-1} n^{\delta}\left|\varphi_{t}\right|>n^{\alpha}\right)
$$

$$
\begin{aligned}
& \leq \sum_{n=1}^{\infty} n \gamma_{n}^{-1} n^{\delta} E\left|\varphi_{t}\right|^{2} / n^{2 \alpha} \\
& \leq c_{3} \sum_{n=1}^{\infty} n^{-1-2 \alpha} \gamma_{n}^{-1} n^{\delta} h_{n}^{-d}<\infty
\end{aligned}
$$

with the following:

$$
\gamma_{n}=n^{-a} \text { for } a>0, \quad h_{n}=n^{-\tau} \text { for }(a+\alpha+\delta) / d<\tau<1 / 2
$$

and c_{3} being a positive constant.
Lastly, we show that (4) holds.
We can write

$$
\begin{aligned}
\gamma_{n}^{-1} n_{n}^{-\alpha}\left|\sum_{t=1}^{n} E W_{n t}\right| & \leq \gamma_{n}^{-1} n^{\delta} n^{-\alpha} \sum_{t=1}^{n}\left|E W_{n t}\right| \\
& \leq \gamma_{n}^{-1} n^{\delta} n^{-\alpha} \sum_{t=1}^{n} E\left|\varphi_{t}\right| \mathbb{I}_{\left(\left|\varphi_{t}\right|>n^{\alpha}\right)} \\
& =n^{a+\delta+1-\alpha} E\left|\varphi_{t}\right| \mathbb{I}_{\left(\left|\varphi_{t}\right|>n^{\alpha}\right)} \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

with the choice $\gamma_{n}=n^{-a}$ and $\alpha>2+a+\delta$.

Next, we cover C_{n} by μ_{n}^{d} spheres in the shape of

$$
\left\{x:\left\|x-x_{n j}\right\| \leq c_{n} \mu_{n}^{-1}\right\} \text { with } 1 \leq j \leq \mu_{n}^{d}
$$

and we can make the following decomposition:

$$
\begin{aligned}
& \left|g_{n}^{-}(x)-E g_{n}^{-}(x)\right| \\
\leq & \left|g_{n}^{-}(x)-g_{n}^{-}\left(x_{j n}\right)\right|+\left|g_{n}^{-}\left(x_{j n}\right)-E g_{n}^{-}\left(x_{j n}\right)\right|+\left|E g_{n}^{-}\left(x_{j n}\right)-E g_{n}^{-}(x)\right| .
\end{aligned}
$$

Therefore,

$$
n^{\delta}\left|g_{n}^{-}(x)-g_{n}^{-}\left(x_{j n}\right)\right| \leq \frac{n^{\delta}}{n h_{n}^{d}} y_{n} \sum_{t=1}^{n}\left|K\left(\frac{x-X_{t}}{h_{n}}\right)-K\left(\frac{x_{j n}-X_{t}}{h_{n}}\right)\right| .
$$

Since the kernel K is Lipschitz, we have

$$
\begin{aligned}
n^{\delta}\left|g_{n}^{-}(x)-g_{n}^{-}\left(x_{j n}\right)\right| & \leq L_{K} y_{n} n^{\delta} \frac{1}{h_{n}^{d+k}}\left\|x-x_{j n}\right\|^{k} \\
& \leq L_{K} y_{n} n^{\delta} h_{n}^{-d-k} c_{n}^{k} \mu_{n}^{-k}=1 / \text { Logn. }
\end{aligned}
$$

If we choose

$$
\mu_{n}=L_{K}^{1 / k} y_{n}^{1 / k} h_{n}-\left(\frac{d}{k}+1\right)_{c_{n} n^{\delta / k}}(\log n)^{1 / k} \rightarrow \infty,
$$

we obtain

$$
\sup _{x \in C_{n}}\left|g_{n}^{-}(x)-E g_{n}^{-}(x)\right| \leq \sup _{1 \leq j \leq \mu_{n}^{d}}\left|g_{n}^{-}\left(x_{j n}\right)-E g_{n}^{-}\left(x_{j n}\right)\right|+\left(\frac{2}{\log n}\right)
$$

so that for all $n \geq n_{1}(\varepsilon), \forall \varepsilon_{n}>0$, we have

$$
P\left(\sup _{x \in C_{n}}\left|\sum_{t=1}^{n} \varphi_{t}\right|>2 \varepsilon_{n}\right) \leq \sum_{j=1}^{\mu_{n}} P\left(\left|g_{n}^{-}\left(x_{j n}\right)-E g_{n}^{-}\left(x_{j n}\right)\right|>\varepsilon_{n}\right) .
$$

Now using similar decomposition as in (1) μ_{n} times; the use of ($\mu_{n}^{d} n^{\delta} n^{\alpha}$) instead of n^{α} permits to conclude that

$$
n^{\delta} \gamma_{n}^{-1} \sup _{\|x\| \leq c_{n}}\left|g_{n}^{-}(x)-E g_{n}^{-}(x)\right| \rightarrow 0, \text { a.s. } n \rightarrow \infty .
$$

It remains to show that

$$
n^{\delta} \gamma_{n}^{-1} \sup _{\|x\| \leq c_{n}}\left|g_{n}^{+}(x)-E g_{n}^{+}(x)\right| \rightarrow 0 \text {, a.s. } n \rightarrow \infty .
$$

For the purpose, we write

$$
n^{\delta} \gamma_{n}^{-1} \sup _{\|x\| \leq c_{n}}\left|g_{n}^{+}(x)-E g_{n}^{+}(x)\right| \leq E_{n}+F_{n}
$$

where

$$
E_{n}=\frac{n^{\delta} \gamma_{n}^{-1}}{n h_{n}^{d}} \sup _{\|x\| \leq c_{n}}\left|\sum_{t=1}^{n} Y_{t} \mathbb{I}_{\left(\left|Y_{t}\right|>y_{n}\right)} K\left(\frac{x-X_{t}}{h_{n}}\right)\right|
$$

and we have

$$
\left(E_{n} \neq 0\right) \subset\left\{\exists t_{0} \in[1,2,3, \ldots, n] \text { such that }\left|Y_{t_{0}}\right|>y_{n}\right\}
$$

and we can write

$$
\begin{aligned}
& \left(E_{n} \neq 0\right) \subset \bigcup_{t=1}^{n}\left\{\left|Y_{t}\right|>y_{n}\right\}, \\
& P\left(E_{n} \neq 0\right) \leq \sum_{t=1}^{n} P\left(\left|Y_{t}\right|>y_{n}\right)=n P\left(\left|Y_{t}\right|>y_{n}\right), \\
& \sum_{n} P\left(E_{n} \neq 0\right) \leq \sum_{n} P\left(\left|Y_{t}\right|>y_{n}\right) \leq \sum_{n} n y_{n}^{-b} E|Y|^{b}, \\
& \sum_{n} P\left(E_{n} \neq 0\right) \leq c_{4} \sum_{n} n y_{n}^{-b}<\infty,
\end{aligned}
$$

where c_{4} is a positive constant.
Then $E_{n} \rightarrow 0$, a.s., $n \rightarrow \infty$ and $\sup _{1 \leq t \leq n}\left|Y_{t}\right| \leq y_{n}$ a.s.
The kernel K being strictly positive, we conclude that $\left|r_{n}(x)\right| \leq y_{n}$ a.s.
Moreover,

$$
F_{n}=\frac{n^{\delta}}{\gamma_{n} n h_{n}^{d}} \sup _{\|x\| \leq c_{n}}\left|\sum_{t=1}^{n} E\left[Y_{t} \mathbb{I}_{\left[\left|Y_{t}\right|>y_{n}\right]} K\left(\frac{x-X_{t}}{h_{n}}\right)\right]\right|
$$

$$
\begin{aligned}
F_{n} & \leq \frac{n^{\delta}}{\gamma_{n} h_{n}^{d}} K_{1} E\left[|Y| \mathbb{I}_{|Y|>y_{n}}\right], \\
F_{n} & \leq \frac{n^{\delta}}{\gamma_{n} h_{n}^{d}} K_{1}\left(E\left(Y^{2}\right)\right)^{1 / 2}\left(P\left[|Y|>y_{n}\right]\right)^{1 / 2} \\
& \leq c_{5} n^{\delta} \gamma_{n}^{-1} h_{n}^{-d} y_{n}^{-b / 2} \rightarrow 0, n \rightarrow \infty,
\end{aligned}
$$

where c_{5} is a positive constant.
Lemma 4.2. Under assumptions of Theorem 3.1,

$$
n^{\delta} \gamma_{n}^{-1} \sup _{x \in \mathbb{R}^{d}}\left|E g_{n}(x)-r(x) f(x)\right| \rightarrow 0, \quad n \rightarrow \infty .
$$

Proof.

$$
\begin{aligned}
& E g_{n}(x)-r(x) f(x)=\frac{1}{n h_{n}^{d}} E\left\{\sum_{t=1}^{n} Y_{t} K\left(\frac{x-X_{t}}{h_{n}}\right)\right\}-r(x) f(x), \\
& E g_{n}(x)-r(x) f(x)=\frac{1}{h_{n}^{d}} \int_{\mathbb{R}^{d}} r(u) K\left(\frac{x-u}{h_{n}}\right) f(u) d u-r(x) f(x) .
\end{aligned}
$$

Writing $z=(x-u) / h_{n}$, we obtain

$$
\begin{aligned}
E g_{n}(x)-r(x) f(x)=\int_{\mathbb{R}^{d}} & {\left[r\left(x-z h_{n}\right)-r(x)\right] K(z) f\left(x-z h_{n}\right) d z } \\
& +r(x) \int K(z)\left[f\left(x-z h_{n}\right)-f(x)\right] d z
\end{aligned}
$$

Assuming that the function $r(\cdot)$ is Lipschitz of ratio 1 and order 1, we have

$$
\left|\int_{\mathbb{R}^{d}}\left[r\left(x-z h_{n}\right)-r(x)\right] K(z) f\left(x-z h_{n}\right) d z\right| \leq h_{n} \Gamma \int|Z| K(z) d z .
$$

Now a Taylor expansion, the Bochner lemma and the fact that the function r is bounded permit to conclude that

$$
n^{\delta} \gamma_{n}^{-1} \sup _{x \in \mathbb{R}^{d}}\left|E g_{n}(x)-r(x) f(x)\right| \rightarrow 0, \quad n \rightarrow \infty
$$

Lemma 4.3. Under assumptions of Theorem 3.1,

$$
\lim _{n \rightarrow \infty} \frac{y_{n} n^{\delta}}{\gamma_{n}} \sup _{\|x\| \leq c_{n}}\left|f_{n}(x)-E f_{n}(x)\right|=0 \text { a.s. }
$$

Proof. This is a particular case of Lemma 4.1 when $Y_{t}=1$ and $\varepsilon=\varepsilon_{0} \gamma_{n} n^{\delta} y_{n}^{-1}$ for a certain $\varepsilon_{0}>0$.

Lemma 4.4. Under assumptions of Theorem 3.1,

$$
\lim _{n \rightarrow \infty} \frac{y_{n} n^{\delta}}{\gamma_{n}} \sup _{x \in \mathbb{R}^{d}}\left|E f_{n}(x)-f(x)\right|=0 .
$$

Proof. We write

$$
E f_{n}(x)-f(x)=\frac{1}{h_{n}^{d}} \int[f(u)-f(x)] K\left(\frac{u-x}{h_{n}}\right) d u
$$

A Taylor expansion, the hypotheses of Theorem 3.1 and the Bochner lemma permit to conclude.

Acknowledgement

The author is thankful to the referees for their comments and criticisms.

References

[1] M. Arfi, Sur la regression non paramétrique d'un processus stationnaire mélangeant ou ergodique, Thèse de Doctorat de l' Université Paris 6, 1996.
[2] M. Arfi, Estimation of the mode function for $\tilde{\rho}$-mixing observations, J. Stat. Appl. Pro. 1(3) (2012), 183-192.
[3] M. Arfi, Nonparametric estimation for the hazard function, Comm. Statist. Theory Methods 42 (2013), 2543-2550.
[4] D. Bosq, Nonparametric statistics for stochastic processes, Lecture Notes in Statistics, 110, Springer-Verlag, 1996.
[5] R. C. Bradley, Equivalent mixing conditions of random fields, Technical Report 336, Center for Stochastic Processes, University of North Carolina, Chapel Hill, 1990.
[6] R. C. Bradley, On the spectral density and asymptotic normality of weakly dependent random fields, J. Theoret. Probab. 5 (1992), 355-373.
[7] W. Bryc and W. Smolenski, Moment conditions for almost sure convergence of weakly correlated random variables, Proc. Amer. Math. Soc. 119 (1993), 629-635.
[8] G. Collomb, Nonparametric regression: an up-to-date bibliography, Statistics 16 (1985), 309-324.
[9] M. Peligrad and A. Gut, Almost sure results for a class of dependent random variables, J. Theoret. Probab. 12 (1999), 87-104.
[10] E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 9 (1964), 141-142.
[11] G. Shixin, Almost sure convergence for $\tilde{\rho}$-mixing random variables sequences, Statist. Probab. Lett. 67 (2004), 289-298.
[12] G. S. Watson, Smooth regression analysis, Sankhya 26 (1964), 359-372.

