
 

Far East Journal of Theoretical Statistics 

© 2023 Pushpa Publishing House, Prayagraj, India 

http://www.pphmj.com 

http://dx.doi.org/10.17654/0972086323001 

Volume 67, 2023, Pages 1-14 P-ISSN: 0972-0863
 

Received: October 19, 2022;  Revised: November 13, 2022;  Accepted: December 15, 2022 

2020 Mathematics Subject Classification: 62G05, 62G08. 

Keywords and phrases: regression, kernel estimate, ρ~ -mixing. 

How to cite this article: Mounir Arfi, On the regression estimation from ρ~ -mixing samples, 

Far East Journal of Theoretical Statistics 67 (2023), 1-14. 

http://dx.doi.org/10.17654/0972086323001 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

Published Online: December 23, 2022 

ON THE REGRESSION ESTIMATION FROM 

ρ~ -MIXING SAMPLES 

 

Abstract 

We give the rate of the uniform convergence for the kernel estimate  

of the regression function over a sequence of compact sets which 

increases to d
R  when n grows to infinity and the observed process is 

ρ~ -mixing. The used estimator for the regression function is the kernel 

estimator proposed by Nadaraya [10] and Watson [12]. 
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1. Introduction 

Let ( ) N∈ttt YX ,  be a strictly stationary process, where ( )tt YX ,  take 

values in RR ×d  and distributed as ( )., YX  Suppose that a segment of data 

( )n
ttt YX 1, =  has been observed. 

We are interested in the study of the convergence rate for a kernel 

estimate of the regression function, known as 

( ) ( ) ., N∈=|= txXYExr tt  

A natural estimator for the function ( )⋅r  is given by 
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where E stands for the subset ( ){ },0, >∈ xfx R  f being the density of the 

process ( )tX  and ( )nh  is a positive sequence of real numbers such that 

0→nh  and ,∞→d
nnh  when .∞→n  

K is a Parzen-Rosenblatt kernel type in the sense of a bounded function 

satisfying 

( ) =
R

1dxxK    and   ( ) .0lim =
∞→

xKx
x

 

Moreover, it is assumed to be strictly positive and with bounded 

variation. 

2. Preliminaries and Assumptions 

Let ( )PF ,,Ω  be a probability space. 



On the Regression Estimation from ρ~ -mixing Samples 3 

Let ( )N∈tX t ,  be a sequence of random variables. Then we define 

( ),,2 StX t ∈σ=F  where S is a subset of .N  

Therefore, given the σ -algebra B  and R  in ,F  let 

( ) ( ) ( ) ( ){ },,,,corrsup, 22 RBRB LYLXYX ∈∈=ρ  

where 

( ) ( ) ( ) ( )
( ) ( )

.
varvar

,corr
YX

YEXEXYE
YX

−=  

Bradley [5] introduced the following coefficients of dependence: 

( ) ( ){ } ,0,,sup~ ≥ρ=ρ kk ts FF  

where the supermum is taken over all finite subsets N⊂TS ,  such that 

( ) .,dist kTS ≥  

Obviously, 

( ) ( ) 0,1~1~0 ≥≤ρ≤+ρ≤ kkk    and   ( ) .10~ =ρ  

Definition 2.1. A random sequence of variables ( )1, ≥tX t  is said to be 

a ρ~ -mixing sequence if there exists a N∈k  such that ( ) .1~ <ρ k  

Without loss of generality, we may assume that ( )1, ≥tX t  is such that 

( ) 11~ <ρ  (see Bryc and Smolenski [7]). 

In the study of ρ~ -mixing sequences, we refer to Bradley [5, 6] for the 

central limit theorem, Bryc and Smolenski [7] for moment inequalities and 

almost sure convergence, Peligrad and Gut [9], Shixin [11] for almost sure 

results, Arfi [2] for almost sure convergence of the mode function, and Arfi 

[3] for an estimation of the hazard function. 

We make use of the following assumptions: 

A1. The observed process ( )N∈tX t ,  is stationary and ρ~ -mixing. 
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A2. 

( ) Γ≤∈∀∞<Γ∃ xfx
d ,, R  

and 

( ) ,,;0 nnn xfCx γ≥∈∀>γ∃  

where nC  is a sequence of compact sets such that { }nn cxxC ≤= :  with 

.∞→nc  

A3. ∞<∃≥∃ Mb ,2  such that ( ) .MYE
b <  

A4. [ ( )( ) ] .,,
2

VxXxrYExV
d ≤=|−∈∀∞<∃ R  

A5. The density f is twice differentiable and its second derivatives are 

bounded on .d
R  

A6. The kernel K is Lipschitz of ratio ,kL  that is ( ) ( ) ≤− yKxK  

.
k

k yxL −  

3. Main Result 

Theorem 3.1. Assuming that the assumptions A1 through A6 hold, the 

function r is Lipschitz, bounded on d
R  and that the bandwidth sequence 

( )nh  satisfies with :ny  

( ) 0, 11 →γ∞= −δδ−−
n

d
n nLognnynh

n
 and ,,021 ∞→→γ −−−δ

nyhn
b

n
d

nn  

where ny  is an unbounded and nondecreasing sequence chosen so that 

.21 nyn ≤≤  

If the kernel K is even with ( ) ∞<dzzKz
2  for ( )dzzz ...,,1=  and if 

there exists a constant D such that ,1
Dhny

d
nnn <γ δ−  then 

( ) ( ) ( )1sup Oxrxrn n
cx n

=−
≤

δ  a.s. .∞→n  
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4. Preliminary Results 

For practical reasons, we make the following decomposition: 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ },
1

xfxfxrxfxrxg
xf

xrxr nnnn −−−=−  
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This leads to 

( ) ( )xrxrn
Cx n

−
∈
sup  

( ) { ( ) ( ) ( ) ( ) ( ) ( ) }.supsup
1

xfxfxrxfxrxg
xf nn

Cx
n

Cx nn

−+−=
∈∈

 

Then if 

( ) nn
Cx

yxr

n

≤
∈
sup  a.s., 

we obtain 

( ) ( )xrxrn
Cx n

−
∈
sup  

{ ( ) ( ) ( ) ( ) ( ) }.supsup1
xfxfyxfxrxg n

Cx
nn

Cx
n

nn

−+−γ=
∈∈

−  

Lemma 4.1. Under the hypotheses of Theorem 3.1, 

( ) ( ) 0sup1 →−γ
∈

δ−
xEgxgn nn

Cx
n

n

 a.s. .∞→n  
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Proof. Because of the possible large values for ,tY  we use a truncation 

technique which consists in decomposing ng  in +
ng  and ,−

ng  where 

( ) [ ]
=

>
+
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




 −=

n

t
n

t
yYtd
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n h
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nt
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1
I  

and ( ) ( ) ( ),xgxgxg nnn
+− −=  with an unbounded sequence ny  defined as in 

Theorem 3.1. 

We start by showing that 

( ) ( ) 0sup1 →−γ −−

≤

δ−
xEgxgn nn

cx
n

n

 a.s. .∞→n  

To this end, we write 

( ) ( ) 
=

−− ϕ=−
n

t

tnn xEgxg

1
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ntnt
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Therefore, ( ) ;0=ϕtE  

,
2 1

nd
n

n
t d

nh

yK =≤ϕ  where 1K  is an upper bound of K, which permits to 

write 

[ ] 





 −Γ≤ϕ ≤

n

t
yYd

n

t
t h

Xx
K

h

Y
E

n
E

nt
I

2
 

( )
 







 −=Γ≤ .
2

du
h
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K

h

uXYE

n n
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By Schwartz inequality and the assumption A4, we have 

( ( ) )


−τ≤





 −+Γ≤ϕ ,

2 1
1

212

ndu
h

ux
K

h

Vur

n
E

n
d
n

t  

where 1τ  is a positive constant. 

Now, similar arguments provide 

( ) ( ( ) )


−−≤




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 −+Γ≤ϕ ,

2 2

2

2

2

2 d
n
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where v is a positive constant. 

Next, we write 

( ( ) ( ) )  
∞

=

∞
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1 1 1
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and for 1>α  and ,1 nt ≤≤  

( ) ( )., αα >ϕ≤ϕ
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We need only to show the following: 
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∞

=

α
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
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1 1

1
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 
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1
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.,01

1

∞→→

γ

α
=

δ− 
n

n

EWn

n

t

ntn

 (4) 

We start by showing (2). 

The Markov inequality and Chebyshev’s inequality lead to 
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if we choose 

a
n n

−=γ  for 0>a  and τ−= nhn  for ( ) .21<τ<δ+α+ da  

The Borel-Cantelli lemma allows to conclude for (2). 

Now, we show (3). 
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
∞

=

αδ− ϕγ≤
1

221

n

tn nEnn  

,

1

121
3

∞

=

−δ−α−− ∞<γ≤
n

d
nn hnnc  

with the following: 

a
n n

−=γ  for τ−=> nha n,0  for ( ) ,21<τ<δ+α+ da  

and 3c  being a positive constant. 

Lastly, we show that (4) holds. 

We can write 


=

α−δ−

=

α−δ− γ≤γ
n

t

ntn

n
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ntn EWnnEWnn

1

1

1

1  
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1
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with the choice a
n n

−=γ  and .2 δ++>α a  

Next, we cover nC  by d
nµ  spheres in the shape of 

{ }1: −µ≤− nnnj cxxx  with d
nj µ≤≤1  

and we can make the following decomposition: 

( ) ( )xEgxg nn
−− −  

( ) ( ) ( ) ( ) ( ) ( ) .xEgxEgxEgxgxgxg njnnjnnjnnjnnn
−−−−−− −+−+−≤  



Mounir Arfi 10 

Therefore, 

( ) ( ) 
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−−δ
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Since the kernel K is Lipschitz, we have 
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so that for all ( ) ,0,1 >ε∀ε≥ nnn  we have 
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Now using similar decomposition as in (1) nµ  times; the use of 

( )αδµ nn
d
n  instead of α

n  permits to conclude that 

( ) ( ) ,0sup1 →−γ −−

≤
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It remains to show that 

( ) ( ) ,0sup1 →−γ ++
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 a.s. .∞→n  



On the Regression Estimation from ρ~ -mixing Samples 11 

For the purpose, we write 

( ) ( ) ,sup1
nnnn
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n FExEgxgn

n
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≤

−δ  
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≤
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0
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where 4c  is a positive constant. 

Then ,0→nE  a.s., ∞→n  and nt
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sup  a.s. 

The kernel K being strictly positive, we conclude that ( ) nn yxr ≤  a.s. 
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[ ],1 nyYd
nn

n YEK
h

n
F >

δ
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≤ I  

( ( )) [ ]( ) 21212
1 nd

nn

n yYPYEK
h

n
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,,021
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where 5c  is a positive constant. 

Lemma 4.2. Under assumptions of Theorem 3.1,  

( ) ( ) ( ) .,0sup1 ∞→→−γ
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Writing ( ) ,nhuxz −=  we obtain 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) −−−=−
d

dzzhxfzKxrzhxrxfxrxEg nnn
R

 

 ( ) ( ) ( ) ( )[ ] −−+ .dzxfzhxfzKxr n  

Assuming that the function ( )⋅r  is Lipschitz of ratio 1 and order 1, we 

have 

( ) ( )[ ] ( ) ( ) ( ) Γ≤−−− .dzzKZhdzzhxfzKxrzhxr nnnd
R

 

Now a Taylor expansion, the Bochner lemma and the fact that the 

function r is bounded permit to conclude that 
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( ) ( ) ( ) .,0sup1 ∞→→−γ
∈

−δ
nxfxrxEgn n

x

n
d
R

 

Lemma 4.3. Under assumptions of Theorem 3.1, 

( ) ( ) 0suplim =−γ ≤

δ

∞→
xfExf

ny
nn

cxn

n

n
n

 a.s. 

Proof. This is a particular case of Lemma 4.1 when 1=tY  and 

1
0

−δγε=ε nn yn  for a certain .00 >ε  

Lemma 4.4. Under assumptions of Theorem 3.1,  

( ) ( ) .0suplim =−γ
∈

δ

∞→
xfxfE

ny
n

xn

n

n d
R

 

Proof. We write 

( ) ( ) ( ) ( )[ ] 





 −−=− .

1
du

h

xu
Kxfuf

h
xfxfE

n
d
n

n  

A Taylor expansion, the hypotheses of Theorem 3.1 and the Bochner 

lemma permit to conclude. 
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