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Abstract

We give the rate of the uniform convergence for the kernel estimate
of the regression function over a sequence of compact sets which
increases to R? when n grows to infinity and the observed process is
P -mixing. The used estimator for the regression function is the kernel

estimator proposed by Nadaraya [10] and Watson [12].
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1. Introduction
Let (X,,Y,), ON be a strictly stationary process, where (X, Y;) take
values in R¢ x R and distributed as (X, Y). Suppose that a segment of data

(X,, Y;);=, has been observed.

We are interested in the study of the convergence rate for a kernel

estimate of the regression function, known as
r(x) = E(Y,|X, =x), tON.
A natural estimator for the function r([)J is given by
n
D YK (x — j
- n
r,(x) = t=1 , xUOE,

n
ZK(X . Xt)
t=1 "

where E stands for the subset {x O R, f(x) > 0}, f being the density of the

process (X,) and (h,) is a positive sequence of real numbers such that

h, - 0 and nh,f — o, when n - o,

K is a Parzen-Rosenblatt kernel type in the sense of a bounded function

satisfying

IRK(x)deI and | lim | x| K(x) = 0.

[ x]- e

Moreover, it is assumed to be strictly positive and with bounded

variation.
2. Preliminaries and Assumptions

Let (Q, F, P) be a probability space.
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Let (X,, t ON) be a sequence of random variables. Then we define
F, =0(X,,t0S), where S is a subset of N.
Therefore, given the 0-algebra B and R in F, let
P(B. R) = sup{corr(X, ¥), X O Ly(B). Y O L,(R)}.
where

E(XY)-E(X)E(Y)
\/var(X) var(Y) '

corr(X, Y) =

Bradley [5] introduced the following coefficients of dependence:
p(k) = sup{p(F . 7, . k=20,
where the supermum is taken over all finite subsets S, 7 [J N such that
dist(S, T) = k.
Obviously,
0<pk+1)<p(k)<1, k=0 and Pp(0)=1.

Definition 2.1. A random sequence of variables (X,, ¢ = 1) is said to be

a P -mixing sequence if there exists a k [J N such that p(k) < 1.

Without loss of generality, we may assume that (X,, # > 1) is such that

p(1) <1 (see Bryc and Smolenski [7]).

In the study of P -mixing sequences, we refer to Bradley [5, 6] for the

central limit theorem, Bryc and Smolenski [7] for moment inequalities and
almost sure convergence, Peligrad and Gut [9], Shixin [11] for almost sure
results, Arfi [2] for almost sure convergence of the mode function, and Arfi

[3] for an estimation of the hazard function.
We make use of the following assumptions:

Al. The observed process (X,, ¢t 0 N) is stationary and P -mixing.
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A2.

T <o, OxOR?, f(x)<T

and

Oy, >0; xOC,, f(x) 2 ¥y,
where C,, is a sequence of compact sets such that C,, ={x: | x| < ¢,} with
Cp — .
A3. [h =22 [M <o suchthat E(Y ") < M.
A4 IV < oo, Ox ORY, E[(Y - r(x))*|X = x] < V.

AS5. The density f is twice differentiable and its second derivatives are

bounded on }Rd.

A6. The kernel K is Lipschitz of ratio L, that is | K(x) = K(y)| <
k
L x =y

3. Main Result

Theorem 3.1. Assuming that the assumptions Al through A6 hold, the

function r is Lipschitz, bounded on R and that the bandwidth sequence
(h,) satisfies with y,, :

nhdy7'n ™8 = w(Logn), Oy, — 0 and n¥; 'yt L0, n - o

where 'y, is an unbounded and nondecreasing sequence chosen so that
1<y, <n/2.
If the kernel K is even with JZZK(Z)CJZ <o for 7z =(z, ... 7g) and if

there exists a constant D such that y;l ynnéh,‘,i < D, then

n® sup | ry(x) = r(x)| = 0(1) as. n - .

| xl<cy
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4. Preliminary Results

For practical reasons, we make the following decomposition:

() = r(x) = {2 (0) = () £ ()] - (D L) - £

fx)
where
1 $ x— X
x) = Y.K fj
and
1 & x— X
fulx) = k(55
" nh,‘,i ; hy
This leads to
sup | 1, (x) = r(x) |
xC,
1
= —r{sup [g,(x) = r(x) F(x)[ + sup [, (x)[| £,(x) = F(x) ]}
f(x) x0C, x0C,
Then if
sup |r,(x)| <y, as.,
x0c,
we obtain

sup |1, (x) = r(x)|
x0c,

= Yo {sup [ g,(x) = r(x) F(x) [+ v sup | f,(x) = £(x) ]

x0C, x0C,

Lemma 4.1. Under the hypotheses of Theorem 3.1,

yi'n® sup | g,(x) = Eg,(x)| - 0 as. n - o.
x0C,
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Proof. Because of the possible large values for Y;, we use a truncation

technique which consists in decomposing g,, in g,:r and g, , where

gn(x) = ﬁZYrH[ sl K

t=1

and g, (x) =g,(x) - g; (x), with an unbounded sequence y, defined as in

Theorem 3.1.

We start by showing that

y;lné sup | g,(x)-Eg,(x)]| - 0 as. n — .

| xl<en

To this end, we write
n
8n (x) - Eg, (x) = Z(bt
t=1

with

0 = = 10 e K (25 - B T e K (252

n

Therefore, E(d,) = 0;

2K . . .
|, | < —1dy” =d,, where K| is an upper bound of K, which permits to
n

write

2r
E|¢t|STE

Y XX
i H[Ytsyn]K( i j

SEJ‘E(UG |/fl(z = u) K(x—ujdu.
n he h,
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By Schwartz inequality and the assumption A4, we have
2r (rz(u) + V)l/2 X—u -1
E|¢t|57 hd K h duSTln s

n n

where T; is a positive constant.

Now, similar arguments provide

E((I)tz) < i—gI (rz(u) +V) K(x _ujdu < vn_zhn_d,

2 hy
where v is a positive constant.
Next, we write
w ® n
D P(yp'n® gn(x) — Egy(x) | > €) = > P[v,zlnf’ D o> e}
n=l1 n=1 t=1

andfora >l and 1<t <n,

W, = q)t]I(‘ o, \Sna)’ Zy = q)tﬂ(‘ o, ‘>na).

Then
n n n n
Zq)t s Z(Wnt —EW,)| + sz + ZEWnt : (D
t=1 t=1 t=1 t=1
We need only to show the following:
00 n
ZP V;;1”6 Z(Wnt - EW,,)| > en® /3J < oo, 2
n=l t=1
00 n
D PV DY Zu | > Sn%] <o, 3)
n=1 =1
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n
D EW,

t=1

a
n

1.8
Yn 1t

— 0, n — 0o, (4)

We start by showing (2).

The Markov inequality and Chebyshev’s inequality lead to

i P[v; 'n®
n=1

n

Z (Wnt - EWnt)

t=1

> Sna/3j

© 7
S, D Va nPE| Wy [2/n*

n=lt=1
< C2Zy;ln6h;dn—l—2(] < o
n=l1
if we choose
y, =n"% for a >0 and h, =n" " for (a + a +38)/d <1 <1/2.

The Borel-Cantelli lemma allows to conclude for (2).

Now, we show (3).

and hence

i P[v;1n5

n=l1

Note that

n

D Zn

t=1

n
D7

=1

> sn“/sJ <3 nply;'n% g, | > %)

n=l1
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[oe]

<y 0| ¢, P /n

n=l1

co
< C3Zn—l—2(1y;1n6h;d < o,

n=1
with the following:
Y, =n % fora>0, h,=n""for (a+a+d)/d<1<1/2,
and c3 being a positive constant.

Lastly, we show that (4) holds.

We can write

n
D EW,
t=1

n

< V;;lnén_a Z | EWy |
t=1

V,;lnéfl_a

n
< y;lnén_az E| ¢t |I[(‘ o, ‘>ng)
t=1

=n"TOR ¢, 1,

—>0,n—>00

| ¢, [>n®)
with the choice ¥, =n % and o >2+a + 3.
Next, we cover C,, by ug spheres in the shape of
{r:]lx =2y | < cuuy'} with 1< j < pf
and we can make the following decomposition:
| g (x) = Eg,, (x) |

<|gn(x)—gn(xjn) |+ &0 (xjn) = Egp(x) | +] Egp (x) — Egy (x) |-
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K(X—th_K{xjn _XtJ ‘
hn hn

Since the kernel K is Lipschitz, we have

Therefore,

o)

o - - n
1%l g (x) = gn () | € 2 3D
nhg =1

S - - 5 1 k
n |gn(x)_gn(xjn)|SLKynn hd+k ||X—Xjn ”
n

h;d—k k

< Lgy,n® ckuk = 1/Logn.

If we choose

1k 1k _(%”) 5/k 1/k
M, = Li v~ hy, c,n"* (Logn)’" - oo,

we obtain

) ) _ B} 2
sup | g, (x) — Eg, (x)|< sup |8n(xjn)‘Egn(xf")|+(Lo nj
x0c, I<jspy, 8

so that for all n > n(€), Ug,, > 0, we have
n
Pl sup | 0,
x0C, Z

t=1
Now using similar decomposition as in (1) W, times; the use of

Hp
> zan s ZPG gr:(xjn) - Eg;;(xjn)l > sn)'
j=1

(19n%n®) instead of n® permits to conclude that

ny' sup | g, (x) - Eg;(x)| - 0, as. n — .

I xll<en

It remains to show that

n%y ' sup | gi(x)-Egl(x)| - 0, as. n - .

I xll<en
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For the purpose, we write

néy;1 sup | g:z—(x) —Eg;(x) | SE,tF,

| xl|l<cp
where
o,,—1 n
ny x—X
E, == sup | Y1 K t
d 14 Y [>yn) (
nhy | x|<e, | S Lmn hy,
and we have

(E, #0) 0{ O[1, 2, 3, ..., n] such that | Y, | > y,}

and we can write

(En 7 0) O U{|Yt| > yn}’
t=1

n
P(E, #0)< Y P(I% | > v,) = nP( Y| > y,).
=1

D P(E, #0)< D P(Y ] > y,) < D "Bl Y P,
n n n

ZP(En #0) < C4Z ny,:b < oo,
n n

where ¢4 is a positive constant.

Then E, - 0, as., n » o and sup |Y, | <y, as.
I<t<n

11

The kernel K being strictly positive, we conclude that | r,(x)| < vy, a.s.

Moreover,

n6

F, = sup

d
Ynlthy | x|<c,

C - X
el (52|

t=1
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5
8 TKENY [Ty sy, ],

n'n

F, <

o)
b s KON Y > )

< csnéy,;lhn_dy;b/z - 0, n - oo,
where c5 is a positive constant.

Lemma 4.2. Under assumptions of Theorem 3.1,

néy,;1 sup | Eg,(x) = r(x)f(x)| - 0, n - oo,
xOR?

Proof.

Eg,(x) - r(x) £( nhd {Zm(

j} () £(2),

By () = (0700 = 7 [ () K52 ) = () 7,

hy

Writing z = (x — u)/h,, we obtain
Eg,(x) = r(x) f(x) = I]Rd [r(x = 2k ) = r()] K (2) f (x - 2k, ) dz

) [ K@U G = 2hy) = )]z

Assuming that the function r([)] is Lipschitz of ratio 1 and order 1, we

have

‘ [ alrte = ) = r(@IK () £ (v = 2hy)dz | < T [ 2| K (2)d:

Now a Taylor expansion, the Bochner lemma and the fact that the

function r is bounded permit to conclude that
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néy;l sup | Eg,(x) = r(x)f(x)] - 0, n - co.

x0OR?

Lemma 4.3. Under assumptions of Theorem 3.1,

o
lim 22

n—o yl’l

sup | f,,(x) = Ef,,(x)| =0 a.s.

| xll<cn
Proof. This is a particular case of Lemma 4.1 when Y; =1 and

€= soynnéy;1 for a certain g, > 0.

Lemma 4.4. Under assumptions of Theorem 3.1,

0
lim 22 sup | Ef,(x) = f(x)]|=0.
noo dn ord

Proof. We write

E() = 1) = 17 [0 = Gl

A Taylor expansion, the hypotheses of Theorem 3.1 and the Bochner

lemma permit to conclude.

Acknowledgement
The author is thankful to the referees for their comments and criticisms.

References

[1] M. Arfi, Sur la regression non paramétrique d’un processus stationnaire

mélangeant ou ergodique, These de Doctorat de 1’ Université Paris 6, 1996.

[2] M. Arfi, Estimation of the mode function for P -mixing observations, J. Stat.

Appl. Pro. 1(3) (2012), 183-192.

[3] M. Arfi, Nonparametric estimation for the hazard function, Comm. Statist. Theory
Methods 42 (2013), 2543-2550.



14
[4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

Mounir Arfi
D. Bosq, Nonparametric statistics for stochastic processes, Lecture Notes in
Statistics, 110, Springer-Verlag, 1996.

R. C. Bradley, Equivalent mixing conditions of random fields, Technical Report
336, Center for Stochastic Processes, University of North Carolina, Chapel Hill,
1990.

R. C. Bradley, On the spectral density and asymptotic normality of weakly
dependent random fields, J. Theoret. Probab. 5 (1992), 355-373.

W. Bryc and W. Smolenski, Moment conditions for almost sure convergence
of weakly correlated random variables, Proc. Amer. Math. Soc. 119 (1993),
629-635.

G. Collomb, Nonparametric regression: an up-to-date bibliography, Statistics
16 (1985), 309-324.

M. Peligrad and A. Gut, Almost sure results for a class of dependent random
variables, J. Theoret. Probab. 12 (1999), 87-104.

E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 9 (1964),
141-142.

G. Shixin, Almost sure convergence for P -mixing random variables sequences,
Statist. Probab. Lett. 67 (2004), 289-298.

G. S. Watson, Smooth regression analysis, Sankhya 26 (1964), 359-372.



