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Conjugate Frobenius manifold and inversion symmetry
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Abstract

We give a conjugacy relation on certain type of Frobenius manifold structures using the theory of
flat pencils of metrics. It leads to a geometric interpretation for the inversion symmetry of solutions
to Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations.
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1 Introduction

Boris Dubrovin introduced the notion of a Frobenius manifold as a geometric realization of a potential
F which satisfies a system of partial differential equations known in topological field theory as Witten-
Dijkgraaf-Verlinde-Verlinde (WDVV) equations. More precisely, a Frobenius algebra is a commutative
associative algebra with an identity e and a nondegenerate bilinear form Π compatible with the product,
i.e., Π(a ○ b, c) = Π(a, b ○ c). A Frobenius manifold is a manifold with a smooth structure of a Frobenius
algebra on the tangent space at any point with certain compatibility conditions. Globally, we require
the metric Π to be flat and the identity vector field e to be covariantly constant with respect to the
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corresponding Levi-Civita connection. Detailed information about Frobenius manifolds and related topics
can be found in [8].

Let M be a Frobenius manifold. In flat coordinates (t1, ..., tr) for Π where e = ∂tr the compatibility
conditions imply that there exists a function F(t1, ..., tr) which encodes the Frobenius structure, i.e., the
flat metric is given by

Πij(t) = Π(∂ti , ∂tj ) = ∂tr∂ti∂tjF(t) (1.1)

and, setting Ω1(t) to be the inverse of the matrix Π(t), the structure constants of the Frobenius algebra
are given by

Ck
ij(t) = Ωkp

1
(t)∂tp∂ti∂tjF(t).

Here, and in what follows, summation with respect to repeated upper and lower indices is assumed. The
definition includes the existence of a vector field E of the form E = (aji ti + bj)∂tj satisfying

EF(t) = (3 − d)F(t) + 1

2
Aijt

itj +Bit
i + c (1.2)

where aji , bj, c, Aij , Bi and d are constants with arr = 1. The vector field E is called the Euler vector field
and the number d is called the charge of the Frobenius manifold. The associativity of Frobenius algebra
implies that the potential F(t) satisfies the WDVV equations

∂ti∂tj∂tkF(t) Ωkp
1
∂tp∂tq∂tnF(t) = ∂tn∂tj∂tkF(t) Ωkp

1
∂tp∂tq∂tiF(t), ∀i, j, q, n. (1.3)

Conversely, an arbitrary potential F(t1, . . . , tr) satisfying equations (1.3) and (1.2) with (1.1) determines
a Frobenius manifold structure on its domain [8]. Moreover, there exists a quasihomogenius flat pencil of
metrics (QFPM) of degree d associated to the Frobenius structure onM which consists of the intersection
form Ω2 and the flat metric Ω1 with the function τ = Πi1t

i (see definition 2.3 below). Here

Ωij
2
(t) ∶= E(dti ○ dtj) (1.4)

where the product dti ○ dtj is defined by lifting the product on TM to T ∗M using the flat metric Ω1. In
this article we prove that, when d ≠ 1, e(τ) = 0 and E(τ) = (1 − d)τ , we can construct another QFPM
of degree 2 − d on M consisting of the intersection form Ω2 and a different flat metric Ω̃1. We call it
the conjugate QFPM. In particular, under a specific regularity condition, we get a conjugation between
a certain type of Frobenius manifold structures on a given manifold. Precisely, we prove the following
theorem.

Theorem 1.1. Let M be a Frobenius manifold with the Euler vector field E and the identity vector field
e. Suppose the associated QFPM is regular of degree d with a function τ . Assume that e(τ) = 0 and
E(τ) = (1 − d)τ . Then we can construct another Frobenius manifold structure on M/{τ = 0} of degree
2 − d. Moreover, we can apply the same method to the new Frobenius manifold structure and it leads to
the original Frobenius manifold structure.

For a fixed Frobenius manifold the new structure that can be obtained using Theorem 1.1 will be
called the conjugate Frobenius manifold structure.

Let us assume Πi,j = δ
r+1
i+j , i.e., the potential F has the standard form

F(t) = 1

2
(tr)2t1 + 1

2
tr

r−1∑
i=2

titr−i+1 +G(t1, ..., tr−1) (1.5)

and the quasihomogeneity condition (1.2) takes the form

E = dit
i∂ti , EF(t) = (3 − d)F(t); dr = 1. (1.6)
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Here, the numbers di are called the degrees of the Frobenius manifold. Recall that a symmetry of the
WDVV equations is a transformation of the form

ti ↦ zi, Π ↦ Π̃, F↦ F̃

such that F̃ satisfies the WDVV equations. The inversion symmetry ([8], Appendix B) is an involutive
symmetry given by setting

z1 = −
1

t1
, zr = Πij(t)titj

2t1
, zk =

tk

t1
, 2 ≤ k < r. (1.7)

Then

F̃(z) ∶= (t1)−2 (F(t) − 1

2
trΠijt

itj) (1.8)

is another solution to the WDVV equations with the flat metric Π̃ij(z) = δr+1i+j . The charge of the
corresponding Frobenius manifold structure is 2 − d and the degrees are

d̃1 = −d1, d̃r = 1, d̃i = di − d1 for 1 < i < r. (1.9)

The inversion symmetry is obtained from a special Schlesinger transformation of the system of lin-
ear ODEs with rational coefficients associated to the WDVV equations. A geometric relation between
Frobenius manifold structures correspond to F(t) and F̃(z) was outlined through the sophisticated notion
of Givental groups in [13]. In this article, we obtained a simple geometric interpertation and we report
that F̃(z) is the potential of the conjugate Frobenius manifold structure. In other words, we prove the
following theorem.

Theorem 1.2. Let M be a Frobenius manifold with charge d ≠ 1. Suppose in the flat coordinates(t1, . . . , tr), the potential F(t) has the standard form (1.5) and the quasihomogeneity condition takes the

form (1.6) with di ≠
d1

2
for every i. Then we can construct the conjugate Frobenius manifold structure

on M/{t1 = 0}. Moreover, flat coordinates for the conjugate Frobenius manifold are

s1 = −t1, si = ti(t1)d1−2did1 for 1 < i < r, sr =
1

2

r∑
i=1

titr−i+1(t1) −2d1 −1. (1.10)

In addition, the corresponding potential equals the potential obtained by applying the inversion symmetry
to F(t) and it is given by

F̃(s) = (t1) −4d1 (F(t1, . . . , tr) − 1

2
tr

r∑
1

titr−i+1) . (1.11)

Examples of Frobenius manifolds satisfying the hypotheses of Theorem 1.2 include Frobenius manifold
structures constructed on orbits spaces of standard reflection representations of irreducible Coxeter groups
in [9] and [22] and algebraic Frobenius manifolds constructed using classical W -algebras [5]. However,
the result presented in this article is a consequence of the work [6] and [1]. There, we investigated the
existence of Frobenius manifold structures on orbits spaces of some non-reflection representations of finite
groups and we noticed that certain structures appear in pairs. Analyzing such pairs led us to the notion
of conjugate Frobenius manifold.

This article is organized as follows. In section 2, we review the relation between Frobenius manifold,
flat pencil of metrics and compatible Poisson brackets of hydrodynamic type. Then we introduce a
conjugacy relation between certain class of quasihomogeneous flat pencils of metrics in section 3. It can be
interpreted as a conjugacy relation between certain class of compatible Poisson brackets of hydrodynamic
type. We prove Theorem 1.1 in section 3 and Theorem 1.2 in section 4. In section 5, we discuss the
findings of this article on polynomial Frobenius manifolds. We end the article with some remarks.
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2 Background

We review in this section the relation between flat pencil of metrics, compatible Poisson brackets of
hydrodynamics type and Frobenius manifold. More details can be found in [10].

Let M be a smooth manifold of dimension r and fix local coordinates (u1, ..., ur) on M .

Definition 2.1. A symmetric bilinear form (., .) on T ∗M is called a contravariant metric if it is invertible
on an open dense subset M0 ⊆M . We define the contravariant Christoffel symbols Γij

k
for a contravariant

metric (., .) by
Γij
k
∶= −ΩimΓj

mk

where Γj
mk

are the Christoffel symbols of the metric < ., . > defined on TM0 by the inverse of the matrix
Ωij(u) = (dui, duj). We say the metric (., .) is flat if < ., . > is flat.

Let (., .) be a contraviariant metric on M and set Ωij(u) = (dui, duj). Then we will use Ω to refer to
the metric and Ω(u) to refer to its matrix in the coordinates. In particular, the Lie derivative of (., .)
along a vector field X will be written LieXΩ while XΩij means the vector field X acting on the entry
Ωij . The Christoffel symbols given in definition 2.1 determine for Ω the contravariant (resp. covariant)
derivative ∇i (resp. ∇i) along the covector dui (resp. the vector field ∂ui). They are related by the
identity ∇i = Ωij(u)∇j .

Definition 2.2. A flat pencil of metrics (FPM) on M is a pair (Ω2,Ω1) of two flat contravariant metrics
Ω2 and Ω1 on M satisfying

1. Ω2 + λΩ1 defines a flat metric on T ∗M for a generic constant λ,

2. the Christoffel symbols of Ω2 + λΩ1 are Γij
2k
+ λΓij

1k
, where Γij

2k
and Γij

1k
are the Christoffel symbols

of Ω2 and Ω1, respectively.

Definition 2.3. A flat pencil of metrics (Ω2,Ω1) on M is called quasihomogeneous flat pencil of metrics
(QFPM) of degree d if there exists a function τ on M such that the vector fields E and e defined by

E = ∇2τ, Ei = Ωij
2
(u)∂ujτ (2.1)

e = ∇1τ, ei = Ωij
1
(u)∂ujτ

satisfy [e,E] = e, LieEΩ2 = (d − 1)Ω2, LieeΩ2 = Ω1 and LieeΩ1 = 0. (2.2)

Such a QFPM is regular if the (1,1)-tensor

R
j
i =

d − 1

2
δ
j
i +∇1iE

j (2.3)

is nondegenerate on M .

Let (Ω2,Ω1) be a QFPM of degree d. Then according to [10], we can fix flat coordinates (t1, t2, . . . , tr)
for Ω1 such that

τ = t1, Ei = Ωi1
2 , e

i = Ωi1
1 , Γij

1,k
= 0, Γi1

2,k =
1 − d

2
δik, Γ1j

2,k
=
d − 1

2
δ
j
k
+ ∂tkE

j , ∂t1E
1 = 1 − d. (2.4)

Moreover, if (Ω2,Ω1) is regular then d ≠ 1.
Consider the loop space L(M) of M , i.e., the space of smooth maps from the circle S1 to M . A

local Poisson bracket on L(M) is a Lie algebra structure on the space of local functionals on L(M). Let
4



{., .} be a local Poisson bracket of hydrodynamic type (PBHT), i.e., it has the following form in the local
coordinates [10]

{ui(x), uj(y)} = Ωij(u(x))δ′(x − y) + Γij
k
(u(x))ukxδ(x − y), i, j = 1, . . . , r (2.5)

where δ(x − y) is the Dirac delta function defined by ∫S1 f(y)δ(x − y)dy = f(x). Then we say {., .} is
nondegenerate if detΩij ≠ 0 and the Lie derivative of {., .} along a vector field X ∶=Xi∂ui reads

LieX{., .}(ui(x), uj(y)) = (Xs∂usΩij −Ωsj∂usXi −Ωis∂usXj)δ′(x − y)
+ (Xs∂usΓij

k
− Γsj

k
∂usXi − Γis

k ∂usXj + Γij
s ∂ukXs −Ωis∂us∂ukXj)ukxδ(x–y).

We will use the following two theorems.

Theorem 2.4. [19] Let X be a vector field on M and {., .} be a PBHT on L(M). If Lie2X{., .} = 0, then
LieX{., .} is a PBHT and it is compatible with {., .}, i.e., {., .}+λLieX{., .} is a PBHT for every constant
λ.

Theorem 2.5. [7] The form (2.5) defines a nondegenerate PBHT {., .} if and only if the matrix Ωij(u)
defines a flat contravariant metric on M and Γij

k
(u) are its Christoffel symbols.

From Theorem 2.5 and Theorem 2.4, we get the following corollary:

Corollary 2.6. Let {., .}2 and {., .}1 be two nondegenerate compatible PBHT on L(M) having the form

{ui(x), uj(y)}α = Ωij
α (u(x))δ′(x − y) + Γij

α,k
(u(x))ukxδ(x–y), α = 1,2.

Suppose {., .}2 + λ{., .}1 is a nondegenerate PBHT for a generic constant λ. Then (Ω2,Ω1) is a FPM on
M . Conversely, a FPM on M determines nondegenerate compatible Poisson brackets of hydrodynamic
type on L(M).

As mentioned in the introduction, ifM is a Frobenius manifold of charge d then there is an associated
QFPM (Ω2,Ω1) of degree d on M , where Ω2 is the intersection form and Ω1 is the flat metric. In the
flat coordinates (t1, . . . , tr) we have τ = Πi1t

i. Then the Euler vector field E and the identity vector field
e of the Frobenius manifold have the form (2.1) and satisfy equations (2.2). The following theorem give
a converse statement.

Theorem 2.7. [10] Let M be a manifold carrying a regular QFPM (Ω2,Ω1) of degree d. Then there
exists a unique Frobenius manifold structure on M of charge d where (Ω2,Ω1) is the associated QFPM.

3 Conjugate Frobenius manifold

We fix a manifold M with a QFPM T = (Ω2,Ω1) of degree d ≠ 1. We fix a function τ for T which
determines the vector fields E and e (see definition 2.3). We suppose

e(τ) = 0 and E(τ) = (1 − d)τ. (3.1)

We introduce the function f(τ) ∶= (τ) 2

1−d and the vector field ẽ ∶= f(τ)e. We define

Ω̃1 ∶= LieẽΩ2 = fΩ1 − f
′(E ⊗ e + e⊗E). (3.2)
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Then

Lie2ẽΩ2 = f
2(Lie2eΩ2) + (2(f ′)2E(τ) − 4ff ′)e⊗ e + ff ′e(τ)Ω1 (3.3)

+ ((f ′)2 − ff ′′)e(τ)(E ⊗ e + e⊗E) = 0
We fix flat coordinates (t1, . . . , tr) leading to the identities (2.4). Considering the condition (3.1), we

will further assume that e = ∂tr . Thus

Ωi1
1 = δ

i
r, ∂trΩ

i1
2 = ∂trE

i = δir. (3.4)

Let {., .} denote the nondegenerate PBHT associated to Ω2. Then by Corollary 2.6, Liee{., .} is the
PBHT associated to Ω1 and Lie2e{., .} = 0. We have a similar statement for ẽ.

Proposition 3.1. Lie2ẽ{., .} = 0. In particular, Lieẽ{., .} is a PBHT compatible with {., .}.
Proof. The PBHT associated to Ω2 has the form

{tα(x), tβ(y)} = Ωαβ
2
δ′(x − y) + Γαβ

2,γt
γ
xδ(x − y).

Here and in what follows, it is to be understood that all functions on the right hand side depend on t(x).
Note that

Lieẽ{., .}(tα(x), tβ(y)) = Ω̃αβ
1
δ′(x − y) + Γ̃αβ

2,γt
γ
xδ(x − y)

where

Γ̃αβ
2,γ = ẽ

ε∂εΓ
αβ
2,γ − Γ

εβ
2,γ∂εẽ

α–Γαε
2,γ∂εẽ

β + Γαβ
2,ε∂γ ẽ

ε–Ωαε
2 ∂

2

εγ ẽ
β

= −Γεβ
2,γδ

α
r δ

1

εf
′–Γαε

2,γδ
β
r δ

1

εf
′ + Γαβ

2,εδ
ε
rδ

1

γf
′–Ωαε

2 δ
β
r δ

1

γδ
1

εf
′′.

From equation (3.3), the coefficients of δ′(x− y) of Lie2ẽ{., .} vanish while the coefficients ̃̃Γαβ
2,γ of δ(x − y)

have the form

̃̃Γαβ
2,γ = − ff

′′∂rΩ
αε
2 δ

β
r δ

1

γδ
1

ε + f
′2δαr δ

β
r δ

1

mδ
1

εΓ
mε
2,γ − f

′2δβr δ
m
r δ

1

γδ
1

εΓ
αε
2,m

+ f ′2δβr δ
α
r δ

1

εδ
1

mΓεm
2,γ − f

′2δαr δ
m
r δ

1

γδ
1

εΓ
εβ
2,m + f

′f ′′Ωεm
2 δ1εδ

α
r δ

β
r δ

1

γδ
1

m

− f ′2δ1γδ
β
r δ

1

mδ
ε
rΓ

αm
2,ε − f

′2δ1γδ
α
r δ

1

mδ
ε
rΓ

mβ
2,ε − Ω̃

αε
2 δ

β
r δ

1

γδ
1

εf
′′.

Then from the identities (2.4) and the definition of f(τ), it follows that ̃̃Γαβ
2,γ = 0. For example,

̃̃Γrr
2,1 = −f∂rΩ

r1
2 f
′′ + f ′2Γ11

2,1 − f
′2Γ1r

2,r +Ω
11

2 f
′′f ′ + f ′2Γ11

2,1 − f
′2Γr1

2,r − f
′2Γr1

2,r − f
′2Γr1

2,r − Ω̃
r1
1 f
′′

= −(d + 1)f ′2 + (1 − d)τf ′f ′′ − ff ′′ − (−f)f ′ = 0
and when γ = 1, α = r and β ≠ r

̃̃Γrβ
2,1 = −2f

′2Γ1β
2,r = −2f

′2(d − 1
2

δβr + ∂trE
β) = 0.

Lemma 3.2. The pair T̃ = (Ω2, Ω̃1) form a QFPM of degree d̃ = 2 − d. Moreover, if T is regular then T̃
is regular.
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Proof. The second term of the identity

Ω̃1(t) = fΩ1 − f
′Ei(∂ti ⊗ ∂tr + ∂tr ⊗ ∂ti)

contributes only to entries of the last row and last column of Ω̃1(t). From the normalization of Ω1, we
get

Ω̃i1
1 (t) = (f − f ′E(τ))δir = (f − (1 − d)τf ′)δir = (−f)δir.

Therefore,
det Ω̃1(t) = f r detΩ1(t) ≠ 0.

Hence, using Proposition 3.1 and Corollary 2.6, T̃ is a FPM. Let ∇̃ denote the contravariant (and also
the covariant) derivative of Ω̃1 and set τ̃ ∶= −τ = −t1. Then the vector fields

ẽ ∶= ∇̃1τ̃ , and Ẽ ∶= ∇2τ̃ = −E

satisfy equations (2.2) and

LieẼΩ2 = Lie−EΩ2 = −(d − 1)Ω2 = (d̃ − 1)Ω2. (3.5)

Hence, T̃ is a QFPM of degree d̃ = 2 − d. For the regularity condition (2.3), we have

R̃
j
i (t) = d̃ − 12

δ
j
i + ∇̃1i(−Ej) = 1 − d

2
δ
j
i −∇1i(Ej) = −Rj

i (t). (3.6)

Therefore, det(R̃j
i ) ≠ 0 if and only if det(Rj

i ) ≠ 0.
We keep the definitions τ̃ = −τ and Ẽ = −E given in the proof of Lemma 3.2 and we call T̃ = (Ω2, Ω̃1)

the conjugate QFPM of T . The name is motivated by the following corollary.

Corollary 3.3. T̃ has a conjugate and it equals T .

Proof. We observe that d̃ = 2 − d ≠ 1 and the function τ̃ = −τ satisfies the requirements (3.1) as

ẽ(τ̃) = 0 and Ẽ(τ̃) = −E(−t1) = (1 − d)t1 = (1 − d̃)τ̃ . (3.7)

However, applying Lemma 3.2 to T̃ , we get a QFPM (Ω2,Liẽ̃eΩ2) where
̃̃e = f(τ̃)ẽ = τ̃ 2

1−d̃ ẽ = (t1) 2

1−d̃ .(t1) 2

1−d ∂tr = e.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. From the work in [10], regularity of the associated QFPM implies that the charge
d ≠ 1. Then the proof follows from applying Lemma 3.2, Corollary 3.3 and Theorem 2.7 to the associated
regular QFPM.

For a fixed Frobenius manifold, the new Frobenius manifold structure constructed using Theorem 1.1
will be called the conjugate Frobenius manifold structure.
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Example 3.4. We consider the Frobenius manifold structure of charge -1 defined by the following solution
to the WDVV equations.

F =
1

2
t22t1 + t

2

1 log t1

In the examples, we use subscript indices instead of superscript indices for convenience. Here, the identity
vector field e = ∂t2 and the Euler vector field E = 2t1∂t1 + t2∂t2 . Note that EF = (3 − d)F + 2t2

1
. The

corresponding regular QFPM consists of

Ω2(t) = ( 2t1 t2
t2 4

) , Ω1(t) = ( 0 1
1 0

) . (3.8)

The conjugate QFPM T̃ = (Ω2, Ω̃1) is of degree d̃ = 3. In the coordinates

s1 = −t1, s2 =
t2

t1

we have

Ω2(s) = ( −2s1 s2
s2

4

s2
1

) , Ω̃1(s) = ( 0 1
1 0

)
and the potential of the conjugate Frobenius manifold structure has the form

F̃ =
1

2
s1s

2

2 − log s1.

Note that the Euler vector field Ẽ = −E(s) = −2s1∂s1 + s2∂s2 and ẼF̃ = (3 − d̃)F̃ + 2. We observe that
applying the inversion symmetry to the potential F(t), we get

F̂(z) = 1

2
z1z

2

2 − log z1 + constant

and F̂(z) defines the same conjugate Frobenius manifold structure. We prove this for certain type of
Frobenius manifolds in next section.

Example 3.5. We consider Frobenius manifold structures found recently in [3] on the orbits space of the
reflection group of type B4. It is provided to us by the anonymous reviewer of this article as an example of
Frobenius manifold structure whose associated QFPM has a conjugate but it is not regular. The potential
of this Frobenius manifold reads

F =
1

2
t24t1 + t2t3t4 −

1

72
t41 +

1

2
t3t

2

1 +
1

6
t22t3t1 −

9

4
t23 +

1

108
t42t3 +

3

2
t23 log t3.

where the charge and degrees given by

d =
1

3
, d1 =

2

3
, d2 =

1

3
, d3 =

4

3
, d4 = 1.

The action of the Euler vector field reads

E F(t) = (3 − d)F(t) + 1

2
Aijt

itj = (3 − d)F(t) + 2t23 (3.9)

and the intersection metric Ω2 will be

Ω̇ij
2
(t) = Ωij

2
(t) +Aij , Aij = Ωiα

1 (t)Ωjβ
1
(t)Aαβ . (3.10)

8



The associated QFPM T = (Ω2,Ω1) is not regular. However, it has a conjugate QFPM T̃ = (Ω2, Ω̃1).
Flat coordinates (s1, s2, s3, s4) for Ω̃1 are defined by

t1 = −s1, t2 = s2, t3 = −s
3

1s3, t4 = −s4s
3

1 − s2s3s
2

1

Note that one can still apply the inversion symmetry to the potential F(t) to get a Frobenius manifold
structure with a potential F̂(z) [8]. We checked that the QFPM obtained from F̂(z) agrees with T̃ . We do
not consider this type of Frobenius manifolds in the next section as we will assume regularity condition
(2.3) of the quasihomogeneous flat pencils of metrics.

Let us assume E has the form E = dit
i∂ti . Then d1 = 1−d and we have the following standard results.

Corollary 3.6. T is regular QFPM if and only if di ≠
d1
2

for all i.

Proof. Applying the definition 2.3 to the matrix Rj
i (t) = (d−12 + di)δji = (−d1

2
+ di)δji .

Lemma 3.7. If Ωij
1
≠ 0, then di + dj = 2 − d. Thus, if the numbers di are all distinct then we can choose

the coordinates (t1, . . . , tr) such that Ωij
1
= δi+jr+1.

Proof. Notice that using [e,E] = e, we get LieEΩ1 = (d − 2)Ω1. Then the statement follows from the
equation (2 − d)Ωij

1
(t) = LieEΩij

1
(dti, dtj) = −diΩ1(dti, dtj) − djΩ1(dti, dtj).

4 Relation with inversion symmetry

We continue using notations and assumptions given in the previous section, but we suppose that T is
regular. Consider the Frobenius manifold structure defined on M by Theorem 2.7 and let F(t) be the
corresponding potential. We assume Ωij

1
(t) = δi+jr+1 which is equivalent to requiring that F(t) has the

standard form (1.5). We suppose further that the quasihomogeneity condition for F(t) takes the form
(1.6). In this case the intersection form Ω2 satisfies [10]

Ωij
2
(t) = (d − 1 + di + dj)Ωiα

1 Ωjβ
1
∂tα∂tβF. (4.1)

Note that at this stage we are working under the hypothesis of Theorem 1.2.

Let us consider the coordinates (1.10) on M/{t1 = 0}. Then the nonzero entries of the Jacobian
matrix are

∂si

∂t1
=
d1 − 2di
d1

ti(t1)−2did1 ,
∂sr

∂t1
= (−2 − d1

2d1
) r−1∑

2

titr−i+1(t1) −2d1 −2 − 2

d1
tr(t1) −2d1 −1,

∂si

∂ti
= (t1)d1−2did1 ,

∂sr

∂ti
= tr−i+1(t1) −2d1 −1, ∂sr

∂tr
= (t1) −2d1 .

Proposition 4.1. Consider the conjugate QFPM T̃ = (Ω2, Ω̃1). Then τ̃ = s1, Ω̃ij
1
(s) = δi+jr+1, ẽ = ∂sr and

Ẽ = d̃is
i∂si where the numbers d̃i are given in (1.9).

Proof. Using the duality between the degrees outlined in Lemma 3.7, we calculate the entries Ω̃ij
1
(s) as

follows.
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I) For i = 1

Ω̃1j
1
(s) = −∂sj

∂tα
Ω̃1α
1 = −

∂sr

∂tr
Ω̃1r
1 = −

∂sr

∂tr
(−(t1) 2

d1 )δ1r = δ1r .
II) For 1 < i < r and 1 < j < r

Ω̃ij
1
(s) = ∂si

∂tk
∂sj

∂tk
Ω̃kl
1

=
∂si

∂t1
∂sj

∂t1
Ω̃11

1 +
∂si

∂ti
∂sj

∂t1
Ω̃i1
1 +

∂si

∂t1
∂sj

∂tj
Ω̃1j
1
+
∂si

∂ti
∂sj

∂tj
Ω̃ij
1

=
∂si

∂ti
∂sj

∂tj
Ω̃ij
1
δi+j,r+1

= (t1) 2d1−2di−2dr−i+1+2d1 δi+j,r+1

= δi+j,r+1.

III) For 1 < i < r

Ω̃ir
1 (s) = (t1) 2

d1
∂si

∂ti
∂sr

∂tr−i+1
+ (−(t1) 2

d1
∂si

∂t1
+
−2di
d1

ti(t1) 2

d1
−1∂s

i

∂ti
) .∂sr
∂tr

= (t1) 2

d1 (t1)d1−2did1 .ti(t1) −2d1 −1 + (−d1 − 2di
d1

(t1) 2

d1 ti(t1)−2did1 +
−2di
d1

ti(t1) 2

d1
−1(t1)d1−2did1 )(t1) −2d1

= (t1)−2did1 ti + (−d1 − 2di
d1

(t1)−2did1 ti +
−2di
d1
(t1)−2did1 ti)

= (t1)−2did1 ti − (t1)−2did1 ti

= 0.

IV) Finally,

Ω̃rr
1 (s) = −(t1) 2

d1
∂sr

∂tr
.
∂sr

∂t1
+

r−1∑
i=2

((t1) 2

d1
∂sr

∂tr−i+1
−
2di
d1
ti(t1) 2

d1
−1∂s

r

∂tr
) .∂sr
∂ti

+ (−(t1) 2

d1
∂sr

∂t1
+

r−1∑
i=2

−
2di
d1
ti(t1) 2

d1
−1 ∂s

r

∂ti
+
−4

d1
tr(t1) 2

d1
−1∂s

r

∂tr
) .∂sr
∂tr

= ( 2
d1
+ 1) r−1∑

2

titr−i+1(t1) −2d1 −2 + 4

d1
tr(t1) −2d1 −1 + r−1∑

2

titr−i+1(t1) −2d1 −2

−
r−1∑
2

2di
d1
titr−i+1(t1) −2d1 −2 − r−1∑

2

2dr−i+1
d1

titr−i+1(t1) −2d1 −2 − 4

d1
tr(t1) −2d1 −1

=
r−1∑
2

( 2
d1
+ 2 −

2di
d1
−
2dr−i+1
d1

) titr−i+1(t1) −2d1 −2
= 0.

It is straightforward to show that ẽ = ∂sr . The vector field Ẽ = Ω1j
2
(s)∂sj while

Ω1j
2
(s) = (d1t1 −d1t

1 ∂s2

∂t1
− d2t

2 ∂s2

∂t2
−d1t

1 ∂s3

∂t1
− d3t

3 ∂s3

∂t3
⋯ −d1t

1 ∂sr

∂t1
− d2t

2 ∂sr

∂t2
+⋯− tr ∂s

r

∂tr
)

= (d1t1 (d2 − d1)t2(t1)d1−2d2d1 (d3 − d1)t3(t1)d1−2d3d1 ⋯ ∑r
i=1(−d1(−2−d12d1

) − di)titr−i+1(t1) −2d1 −1)
= (d1t1 (d2 − d1)t2(t1)d1−2d2d1 (d3 − d1)t3(t1)d1−2d3d1 ⋯ 1

2
∑r

i=1 t
itr−i+1(t1) −2d1 −1) (4.2)

= (−d1s1 (d2 − d1)s2 (d3 − d1)s3 ⋯ sr ) .
10



We observe that the inverse transformation of the inversion symmetry (1.7) is given by

t1 =
−1

z1
, tr = zr +

1

2

r−1∑
2

zizr−i+1

z1
, tk =

−zk

z1
, 2 ≤ k ≤ r.

Thus, the potential (1.8) obtained from applying the inversion symmetry to F(t) has the form

F̃(z) = (z1)2F(−1
z1
,
−z2

z1
, . . . ,

−zr−1

z1
,
1

2

r∑
1

zizr−i+1

z1
) + 1

2
zr

r∑
1

zizr−i+1.

Lemma 4.2. The potential F̃(z) has the form

F̃(s) = (t1) −4d1 (F(t1, . . . , tr) − 1

2
tr

r∑
1

titr−i+1) , zi ↔ si. (4.3)

Proof. We use the identities

t1 = −s1 = (s1)2(−1
s1
), tr = (s1) 2

d1 (1
2

r∑
1

sisr−i+1

s1
) , ti = (s1) 2did1 (−si

s1
),1 < i < r,

and the quasihomogeneity of the potential F(t), i.e.,
( 2
d1
E)F(t) = 2(3 − d)

d1
F(t) = ( 4

d1
+ 2)F(t). (4.4)

Then

(t1) −4d1 [F(t1, . . . , tr) − 1

2
tr

r∑
1

titr−i+1]
= (t1) −4d1 [F(t1, . . . , tr) + ( − t1(tr)2) − 1

2
tr

r−1∑
2

titr−i+1]
= (s1) −4d1 [F((s1)2(−1

s1
), (s1) 2d2d1 (−s2

s1
), . . . , (s1) 2dr−1d1 (−sr−1

s1
), (s1) 2

d1 (1
2

r∑
1

sisr−i+1

s1
)) + ((sr)2(s1) 4

d1
+1

+ sr
r−1∑
2

sisr−i+1(s1) 4

d1 + s1 (1
2

r−1∑
2

(s1) 2

d1
−1
sisr−i+1)

2

) − 1

2
sr(s1) 4

d1

r−1∑
2

sisr−i+1 − s1 (1
2

r−1∑
2

(s1) 2

d1
−1
sisr−i+1)

2⎤⎥⎥⎥⎥⎦
= (s1) −4d1 [(s1) 4

d1
+2
F(−1

s1
,−
s2

s1
,−
s3

s1
, . . . ,

1

2

n∑
i=1

−sisn−i+1

s1
) + (sr)2(s1) 4

d1
+1
+
1

2
sr

r−1∑
2

sisr−i+1(s1) 4

d1 ]
= (s1)2F(−1

s1
,
−s2

s1
, . . . ,

−sr−1

s1
,
1

2

r∑
1

sisr−i+1

s1
) + 1

2
sr

r∑
1

sisr−i+1

which is the potential of the inversion symmetry by setting si = zi.

Now we prove Theorem 1.2 stated in the introduction.
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Proof of Theorem 1.2. By Corollary 3.6 and Theorem 1.1, we use the above notations and assume T =(Ω2,Ω1) is the associated QFPM. We need to show that the conjugate QFPM T̃ = (Ω2, Ω̃1) equals the
QFPM associated to the potential F̃(s) given in (4.3). This leads to verifying that Ω2(s) equals the
intersection form Ω̂2(s) defined by F̃(s). It is straightforward to show that F̃ (s) is a quasihomogenius
function, i.e., ẼF̃ = (3 − d̃)F̃ . Hence

Ω̂ij
2
(s) ∶= (d̃ − 1 + d̃i + d̃j)Ωiα

1 Ωjβ
1
∂sα∂sβ F̃.

After long calculations we find that Ω̃ij
2
(s) = Ω̂ij

2
(s). For examples, we obtained the first row of Ωij

2
(s) in

(4.2) and for even r and 1 < i, j < r, we get by denoting ∂ti∂tjG(t) as Gi,j

Ωij
2
(s) = ∂si

∂t1
∂sj

∂t1
Ω1,1
2
+
∂si

∂ti
∂sj

∂t1
Ωi,1
2
+
∂si

∂t1
∂sj

∂tj
Ω1,j
2
+
∂si

∂ti
∂sj

∂tj
Ωi,j
2

= d1(1 − 2di
d1
)(1 − 2dj

d1
)titj(t1)1− 2di

d1
−

2dj

d1 + di(1 − 2dj

d1
)titj(t1)1− 2di

d1
−

2dj

d1

+ dj(1 − 2di
d1
)titj(t1)1− 2di

d1
−

2dj

d1 + (d − 1 + di + dj)(t1)2− 2di
d1
−

2dj

d1 (Gr−i+1,n−j+1 + t
rδr,i+j)

= (d1 − di − dj)titj(t1)1− 2di
d1
−

2dj

d1 + (−d1 + di + dj)(t1)2− 2di
d1
−

2dj

d1 (Gr−i+1,r−j+1 + t
rδr,i+j)

= (d1 − di − dj)(t1)1− 2di
d1
−

2dj

d1 (titj − t1Gr−i+1,r−j+1 − t
1trδr,i+j) . (4.5)

On the other hand

∂2F̃

∂sr−i+1∂sr−j+1
= (trδr,i+j(t1)1− 2

d1
−

2dr−i+1
d1 +Gr−i+1,r−j+1(t1)−1− 4

d1
+

2dr−i+1
d1 )(−(s1) 2dr−j+1d1

−1) (4.6)

+ (ti(t1)1− 2

d1
−

2di
d1 )(si(s1) 2

d1
−1)

= (trδr,i+j(t1)2− 2di
d1
−

2dj

d1 +Gr−i+1,r−j+1(t1)−2− 4

d1
+

2dr−i+1
d1

+
2dr−j+1

d1 ) − (titj(t1)2− 2di
d1
−

2dj

d1 )
= (t1)1− 2di

d1
−

2dj

d1 (trδr,i+jt1 +Gr−i+1,r−j+1t
1 − titj) .

Therefore,

Ω̂ij
2
(s) = (di + dj − d1)(t1)1− 2di

d1
−

2dj

d1 (trt1δr,i+j +Gr−i+1,r−j+1t
1 − titj) = Ωij

2
(s). (4.7)

Example 4.3. Consider the following solution to WDVV equations

F =
t3
1

6
−
1

2
t22t1 +

1

2
t22t3 +

1

2
t1t

2

3. (4.8)

It corresponds to a trivial Frobenius manifold structure, i.e., Frobenius algebra structure does not depend
on the point. Here the charge d = 0, the Euler vector field E = ∑ ti∂ti and identity vector field e = ∂t3 .
The intersection form is

Ω2(t) = ⎛⎜⎝
t1 t2 t3
t2 t3 − t1 −t2
t3 −t2 t1

⎞⎟⎠
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Setting

s1 = −t1, s2 =
t2

t1
, s3 =

t2
2

2t3
1

+
t3

t2
1

the conjugate QFPM has Ω̃ij
1
(s) = δi+j

3
and

Ω2(s) =
⎛⎜⎜⎜⎝

−s1 0 s3

0 s3 +
3s2

2

2s1
+ 1

s1
−
s3
2

s2
1

− 2s2
s2
1

s3 −
s3
2

s2
1

− 2s2
s2
1

3s4
2

4s3
1

+
3s2

2

s3
1

− 1

s3
1

⎞⎟⎟⎟⎠
The potential of the conjugate Frobenius manifold structure reads

F̃(s) = −1
6s1
+
s2
2

2s1
+
s4
2

8s1
+
1

2
s22s3 +

1

2
s1s

2

3.

One can check that this is the same potential obtained by applying the inversion symmetry to F(t). Note
that Ẽ = −s1∂s1 + s3∂s3 and ẼF̃ = F̃.

5 The conjugate of a polynomial Frobenius manifold

In this section, we recall the construction of Frobenius manifolds on the space of orbits of Coxeter groups
given in [9] and we apply the results of this article.

We fix an irreducible Coxeter group W of rank r. We consider the standard real reflection repre-
sentation ψ ∶ W → GL(V ), where V is a complex vector space of dimension r. Then the orbits space
M = V /W is a variety whose coordinate ring is the ring of invariant polynomials C[V ]W . Using the
Shephard-Todd-Chevalley theorem, the ring C[V ]W is generated by r algebraically independent homo-
geneous polynomials. Moreover, the degrees of a complete set of generators are uniquely specified by the
group [16].

We fix a complete set of homogeneous generators u1, u2, . . . , ur for C[V ]W . Let ηi be the degree of
ui. Here, we have

2 = η1 < η2 ≤ η3 ≤ . . . ≤ ηr−1 < ηr.

It is known that ηi + ηr−i+1 = ηr + η1. Consider the invariant bilinear form on V under the action of W.
Then it defines a contravariant flat metric Ω2 on M and we let u1 equals its quadratic form. We fix the
vector field e ∶= ∂ur . There is another flat contravariant metric Ω1 ∶= LieeΩ2 on M , which was initially
studied by K. Saito ([20], [21]) and it is called the Saito flat metric. Then T ∶= (Ω2,Ω1) is a FPM and
Dubrovin proved the following theorem.

Theorem 5.1. [10] T = (Ω2,Ω1) is a regular QFPM of charge ηr−2
ηr

and leads to a polynomial Frobenius
manifold structure on M , i.e., the corresponding potential is a polynomial function in the flat coordinates.

We observe that the polynomial Frobenius structure defined by T has τ = 1

ηr
u1, the Euler vector field

E = 1

ηr
∑i ηiu

i∂ui , the identity vector field e and degrees ηi
ηr
. Note that E is independent of the choice

of generators but e is defined up to a constant factor. Thus, changing the set of generators will lead to
an equivalent Frobenius manifold structure [9]. The following theorem was conjectured by Dubrovin and
proved by C. Hertling.

Theorem 5.2. [15] Any semisimple polynomial Frobenius manifold with positive degrees is isomorphic
to a polynomial Frobenius structure constructed on the orbits space of the standard real reflection repre-
sentation of a finite irreducible Coxeter group.
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Clearly, T satisfies the hypotheses of Theorem 1.1 and we have a conjugate regular QFPM T̃ ∶=(Ω2,LieẽΩ2), where ẽ = (τ)ηre. Moreover, from the work of K. Saito and his collaborators (see also
[9]), we can fix u1, . . . , ur to be flat with respect to Ω1 and the potential of the polynomial Frobenius
manifold will have the standard form (1.5). In particular T̃ is the regular QFPM of the Frobenius
manifold structure obtained by applying inversion symmetry to the polynomial Frobenius manifold on
M . Considering Theorem 5.2, we wonder what is the intrinsic description for the conjugate Frobenius
manifold as this may help in the classification of Frobenius manifolds.

In [1], we give a similar discussion for the r Frobenius manifold structures constructed in [22] on the
orbits space M when W is of type Br or Dr.

6 Remarks

It is important to mention that the inversion symmetry of the WDVV equation can be applied to a
solution F(t) in the standard form (1.5) under more general quasihomogeneity condition than condition
(1.6) and without the regularity condition (2.3) of the associated QFPM . In this case, if the conjugate
Frobenius manifold structure exists, we believe that it will be equivalent to Frobenius manifold structure
obtained by applying the inversion symmetry, we confirm this by Example 3.4 and Example 3.5.

Note that Frobenius manifold structures which are invariant under inversion symmetry were studied
in [18]. We did not consider these cases as the charge will equal 1.

It will be interesting to study the consequences of Theorem 1.2 on the interpretation of the inversion
symmetry in terms of the action of the Givental groups obtained in [13] and the relation found in [17]
between the principle hierarchies and tau functions of the two solutions to the WDVV equations related
by the inversion symmetry. We also believe that the findings in this article can be generalized to the
theory of bi-flat F -manifolds [2].

It is known that the leading term of a certain class of compatible local Poisson structures leads to
a regular QFPM and thus to a Frobenius structure [12], [10]. Polynomial Frobenius manifolds obtained
in [4] are constructed by fixing the regular nilpotent orbit in a simple Lie algebra and uses compatible
local Poisson brackets obtained by Drinfeld-Sokolov reduction. In these cases, the Poisson brackets form
an exact Poisson pencil, and thus their central invariants are constants [14]. If the Lie algebra is simply-
laced, then the central invariants are equal [11] which means the Poisson structures are consistent with the
principle hierarchy associated with the Frobenius manifold [12]. Fix one of these polynomial Frobenius
structures and denote the associated local Poisson brackets by B2 and B1 (here B2 is the classical W -
algebra). In the flat coordinates, these local Poisson brackets form an exact Poisson pencil under the
identity vector field e, i.e., LieeB2 = B1 and LieeB1 = 0. Let us denote the leading term of B2 by B2 and ẽ
is the vector field associated with the conjugate Frobenius manifold structure. We proved in this article
that Lie2ẽB2 = 0. Then it is natural to ask if ẽ also leads to an exact Poisson pencil, i.e., Lie2ẽB2 = 0. Our
calculations for the simple Lie algebra of type A3, shows that this is not true.
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