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Reconceptualization of Coefficient Alpha Reliability for Test Summed and Scaled Scores  

Abstract 

Coefficient alpha reliability persists as the most common reliability coefficient reported in 
research. The assumptions for its use are, however, incomprehensively well-understood. 
The current paper challenges the commonly used expressions of coefficient alpha and 
argues that while these expressions are correct when estimating reliability for summed 
scores, they are not appropriate to extend coefficient alpha to correctly estimate the 
reliability for nonlinearly-transformed scaled scores such as percentile ranks and stanines. 
The current paper reconceptualizes coefficient alpha as a complement of the ratio of two 
unbiased estimates of the summed score variance. These include conditional summed score 
variance assuming uncorrelated item scores (gives the error score variance) and 
unconditional summed score variance incorporating intercorrelated item scores (gives the 
observed score variance). Using this reconceptualization, a new equation of coefficient 
generalized alpha is introduced for scaled scores. Two applications (cognitive and 
psychological assessments) are used to compare the performance (estimation and 
bootstrap confidence interval) of the reliability coefficients for different scaled scores. 
Results support the new equation of coefficient generalized alpha and compare it to 
coefficient generalized beta for parallel test forms. Coefficient generalized alpha produced 
different reliability values which were larger than coefficient generalized beta for different 
scaled scores. 
Keywords: reliability, coefficient alpha, coefficient generalized alpha, coefficient beta, 
coefficient generalized beta, summed scores, scaled scores. 
 
 In different educational, psychological, social, medical and other fields, raw scores 

(summed scores) on tests and measurements are typically transformed to scaled scores for 

appropriate interpretations and decision-making purposes. Currently, almost all large-scale 

tests use scaled scores in their score reports. Examples of scaled scores include percentile 

ranks, age equivalents, standardized scores, and normalized scores. Reliability of the 

aforementioned scores was investigated abundantly in previous research studies (e.g., 

Almehrizi, 2013, 2016; Brennan & Lee, 1999; Feldt & Qualls, 1998; Kolen, et. al., 1992; Kolen 

& Lee., 2011; Kolen, et. al., 2012; Lee, 2007) which concluded that there is a need for 

investigating the reliability of all types of test scaled scores besides the reliability of summed 

scores. The Standards for Educational and Psychological Testing (American Educational 

Research Association, American Psychological Association, & National Council of 
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Measurement in Education, 2014) emphasize that reliability should be examined for all 

scores that are employed in test reports for better interpretation and utilization of test 

scores.  

Reliability of summed scores do not describe the reliability of scaled scores except 

for those scores that result from linear transformations of summed scores. Test-retest 

reliability of summed scores, for example, is the correlation between the two summed 

scores obtained from two independent administrations of test items to the same group of 

examinees. Test-retest reliability of scaled scores is the correlation between the two scaled 

scores following the transformation of the summed scores obtained from two independent 

administrations of test items to the same group of examinees. These test-retest reliabilities 

are not equal for nonlinear scaled scores. Nonlinear scaled scores including percentile ranks, 

age equivalents, and normalized scores could indicate larger or smaller reliability values 

than summed scores (Almehrizi, 2013; Kolen, et. al., 1992; Kolen et. al., 1996). 

As coefficient alpha (Cronbach, 1951) is commonly used to estimate the reliability of 

test scores, Almehrizi (2013) presented a generalization of coefficient alpha (coefficient 

generalized alpha) to estimate the internal consistency reliability for scaled scores under the 

same assumptions as coefficient alpha for summed scores. Both coefficient alpha for 

summed scores and coefficient generalized alpha for scaled scores assume that the test 

forms are essentially tau-equivalent in which all items measure a common construct, have 

equal true scores, and have unequal error scores.  

In a matrix of responses     , for   examinees (            on   items 

(          ; all scored with   score points (         ), the three common expressions 

of coefficient alpha (Cronbach, 1951) for summed scores,  , are  
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. Here,  ̅  is the mean score for an 

item,  ,  ̅  is the mean for an examinee  , and  ̅ is the grand mean for the matrix of    . If 

the summed scores,  , are transformed to scaled scores,  , the three expressions of 

coefficient generalized alpha (Almehrizi, 2013) for scaled scores  are,  
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Here,         is the conditional probability mass function (under the assumption of 

uncorrelated item scores) for the summed scores based on the proportions of all score 

points on each individual item,   .      is the unconditional observed probability mass 

function for the summed scores in the sample. 

Although coefficient generalized alpha gives different reliability estimates for 

different test scaled scores that are dissimilar from the reliability estimate of test summed 

scores, it was found to produce values exceeding the value of 1 for some scaled scores as 

discussed by Almehrizi (2013). This is unacceptable, however, in the reliability context. Such 

values occur when error score variances show negative estimate values. Almehrizi (2013) 

suggested setting such estimates of error variance at a value of 0, because the error score 

variance in the population cannot take negative values while the negative estimates could 

result from either a small or nonrandom sampling.  

This rectification of the negative estimates of error score variance is an ad-hoc and 

remains unacceptable given the fact that the error score variance should not be negative by 
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definition even in sample estimation. The current paper explains the cause of the negative 

estimate of this error score variance in coefficient generalized alpha. Additionally, the paper 

presents a different reconceptualization of the error score variance associated with 

coefficient alpha and presents a new corrected equation for coefficient generalized alpha 

for scaled scores under the classical definition of reliability within the classical test theory 

framework. The relationship between reliability estimations under the essentially tau-

equivalence assumption and the classical parallelism assumption is discussed for test scaled 

scores. Finally, two applications (cognitive assessment and psychological assessment) are 

used to compare the performance (estimation and bootstrap confidence interval) of the 

reliability coefficients for different scaled scores.  

Reconceptualization of Coefficient Alpha for Summed Scores 

Coefficient alpha continues to be incomprehensively understood (Barbera et. al., 

2021; Cho & Kim, 2015; Green & Yang, 2009; Sijtsma, 2009) even though it is widely 

reported in research studies (Sijtsma & Pfadt, 2021). Barbera et. al. (2021) argued that it is a 

result of the ambiguous and imprecise language used to describe what information is 

communicated by an estimated value of alpha. Coefficient alpha has specific definitions of 

both true scores and error scores in the reliability context. Ellis (2021) reported that 

coefficient alpha can be differently interpreted using the definition of true scores in three 

test theories: Classical test theory, generalizability theory and latent trait theory.  

From the classical definition of reliability in the classical test theory (     
  
 

  
    

  
 

  
 ), the error score variance in coefficient alpha for summed scores is defined as 
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 ̂ 
     consists of two components: the sum of item variances, ∑  ̂ 

 
 , and the summed 

score variance,  ̂    . The first component gives the summed score variance for 

uncorrelated item scores, whereas the second component provides the summed score 

variance for correlated item scores. Using a component that incorporates correlated item 

scores in estimating error score variance contradicts the independence assumption of item 

error scores in classical test theory, which results in a paradox.  

As a special case, this form gives an accurate estimate of the error score variance for 

summed scores only. This is algebraically true because the grand mean of summed scores 

( ̅) is equal to the average of person means ( ̅ ) and to the average of item means ( ̅ ). 

However, because scaled scores are transformations of summed scores and not 

transformations of item scores (an exception is only for linear scaled scores), this 

relationship between grand mean and person and item means is not applicable. This form of 

the error score variance for nonlinearly-transformed scaled scores, if used, produces an 

estimate of the error score variance that incorporates correlation among items and 

contradicts the assumption of independent error scores. The error score variance is either 

underestimated or overestimated and could have negative estimates for some scaled 

scores. This would result in a biased coefficient generalized alpha and could exceed a value 

of 1.  

 ̂ 
     can be written in a different way that is congruent with the classical definition 

of independent error scores, 
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This form consists of two terms: the average of within person variances and the item mean 

variance. Moreover,  ̂ 
     can be written in more useful form, 
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Examining the three components in equation (5) shows three properties: 1) all components 

incorporate uncorrelated item scores and conform to the assumption of independent error 

scores for classical test theory, 2) all components can be estimated for nonlinear scaled 

scores, 3) all components are within-person variances using different mean scores (person 

mean, item mean, grand mean).  

Using the item by person data matrix, the first term is the average of within-person 

variances using person means, the second is the sum of item variances (or the average of 

within-person using item means), and the third is a function of total variance (or the average 

of within-person using grand mean). These three terms estimate conditional summed score 

variance under the assumption of uncorrelated item scores using different conditioning 

functions of summed scores. That is,  
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Here,        ,        , and        represent the conditional probability mass functions 

for the summed scores on the proportions of all score points for three item responses: (1) 

person response patterns, (2) item response patterns, and (3) total response patterns. 

These three terms (  
       

          ) provide the estimate of the conditional summed 

score variance under the assumption of independent item error scores. Note that          
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uses the proportions of all score points in the observed response pattern for each individual 

 ,         employs the proportions of all score points in the observed response pattern for 

each item  , and        utilizes the proportions of all score points in the observed response 

pattern matrix.  

Conversely, the unbiased observed summed score variance,  ̂    , is the 

unconditional summed score variance that incorporates the intercorrelation among item 

scores. That is  
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where      is the observed probability mass function for summed scores in the sample. 

Hence, using the classical definition of reliability in classical test theory, the error score 

variance and the true score variance for summed scores associated with coefficient alpha 

are, 
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and coefficient alpha for summed scores is,  
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This form suggests that need for a new conceptualization of coefficient alpha for summed 

scores. It is the complement of the ratio of two unbiased estimators of summed score 

variances conditional summed score variances which assume uncorrelated item scores, 

 ̂ 
    , and the unconditional summed score variance incorporating intercorrelated item 

scores,  ̂    .  

Reconceptualization of Coefficient Alpha for Scaled Scores 
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The new conceptualization of coefficient alpha facilitates the estimation of coefficient 

alpha reliability for scaled scores. All terms in equation (10) are about the summed scores 

not item scores. The transformation function used to obtain scaled scores for summed 

scores can be utilized to obtain the corresponding terms for scaled scores by substituting 

each summed score by its scaled score in equations (6) to (9). That is, 
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    ,   

    , and       are the scaled score variances assuming uncorrelated item scores 

and conditioned on the proportions of all score points for three response patterns: person 

response patterns, item response patterns, and total response patterns, respectively.  ̂     

is the unconditional scaled score variance that incorporates the intercorrelations among the 

item scores. All these four scaled score variances are larger than zero.  

Hence, using the classical definition of reliability in the classical test theory, the error 

score variance and the true score variance for scaled scores are, 
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and coefficient generalized alpha for scaled scores is,  
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Similarly, coefficient generalized alpha for scaled scores is defined as the complement of the 

ratio of two scaled score variances: conditional scaled score variances assuming 
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uncorrelated item scores,  ̂  
    , and unconditional scaled score variance incorporating 

intercorrelated item scores,  ̂    .  

Since summed scores are a special case of scaled scores (identity transformation of 

summed scores), coefficient generalized reliability if applied to summed scores gives exact 

estimates as coefficient alpha. Hypothetically,  ̂  
     should range between zero (hence, 

  ̂ =1) and  ̂     (hence,   ̂ =0). However,   ̂ could have negative values indicating that 

 ̂  
     could exceed  ̂    . This happens when test items show negative intercorrelations. 

If items are consistent, they should measure one construct and thus items display no 

negative intercorrelations. 

Estimation of Conditional Probability Mass Functions 

The three conditional summed score variances (and scaled score variances) require 

estimating three conditional probability mass functions for summed scores under the 

assumption of uncorrelated item scores using the proportions of all score points for three 

response patterns: person response patterns, item response patterns, and total response 

patterns. All of these conditional probability mass functions for summed scores can be 

obtained using the same recursion formula adapted by Almehrizi (2013) with different 

inputs of the proportions of item score points [say     for           , where   is the number 

of score points]. There are three conditioning matrices of proportions of item score points 

for the three response patterns as follows:         for         when estimating 

  
           

     for each single examinee,         for         when estimating 

  
           

    , and        for        when estimating                .  

Let          be the desired conditional probability mass functions for summed 

scores,  , on the conditioning matrix of proportions of item score points,    . To obtain 

         through the recursion formula, define    as a random variable of raw scores on the 
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first   items on the test (   ranges between     and    ). Now, let           represent the 

probability mass function of summed scores,   , on a test of   items. For a test of one item,   

= 1, entered into the formula,  

             ,     for      =          .                                          (16) 

For the next    , the recursion formula is as follows: 

          ∑                      , for   =               .                        (17)  

To use this recursion formula, items are entered into the recursion formula in any order, 

beginning with any item; and the formula can be applied recurrently by increasing   on each 

recurrence until entering all   items. The process ends after    , which gives the 

required         . That is,                   .  

It is noteworthy to mention that the same recursion formula can be used to estimate 

the three conditional probability mass functions for summed scores but with using different 

conditioning matrix of the proportions of item score points,    . The recursion formula is 

applied one time to obtain        using        for all items (equal for all items), one time 

to obtain         using         for each item (different by items), and one time for 

obtaining  ( |  ) for each individual  , using         for all items (equal for all items). 

There are   times of recursion formula to obtain  ( |  )  each for a single examinee.  

Relationship with Coefficient Beta for Summed and Scaled Scores 

Almehrizi (2021) presented coefficient beta for summed scores and scaled scores on a test 

of any number of scoring patterns as an extension of KR-21 reliability for Kuder and 

Richardson (1937). This is an appropriate estimate of reliability of summed scores and 

scaled scores when the test forms are classically-parallel equivalent where test items 

measure the same construct and have equal true scores and equal uncorrelated error 
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scores. Using the classical definition of reliability in the classical test theory, the error score 

variance and the true score variance for summed scores are, 
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and coefficient beta for summed scores is, 
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For scaled scores, the error score variance and the true score variance are, 
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and coefficient generalized beta for scaled scores is, 
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From equations (19) and (21), both coefficient beta and coefficient generalized beta  

are interpreted as the complement of the ratio of two summed/scaled score variances: 

conditional summed/scaled score variance assuming uncorrelated item scores and 

unconditional summed/scaled score variance incorporating intercorrelated item scores. 

When comparing coefficient alpha and coefficient beta for summed scores, the two 

coefficients use different estimators of both error score variance and true score variance. 

Coefficient beta is usually smaller than or equal to coefficient alpha such as,  
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Additionally, the difference between coefficient generalized alpha and coefficient 

generalized beta for scaled scores is a function of the three conditional scaled score 

variance and the unconditional scaled score variance. Similarly, coefficient generalized beta 

for scaled scores is usually smaller than or equal to coefficient generalized alpha such as, 
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This relationship between coefficient alpha and coefficient beta for both summed 

scores and scaled scores conforms to the well-established fact in the classical test theory. 

The error score variance when the test forms are essentially tau equivalent is smaller than 

the error score variance when the test forms are parallel equivalent (Feldt, 1984; Feldt & 

Qualls, 1998). That is, 
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Also, the two coefficients do not only employ different estimators of error score variance 

but also different estimators of true score variance. The true score variance when the test 

forms are essentially tau equivalent is larger than the true score variance when the test 

forms are parallel equivalent by an amount related to differences of item averages. That is  
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This amount of difference between the two error score variances is identical to the 

difference between the two true score variances. This is  correct for both summed scores 

and scaled scores.  

Application 1 

Measures and Participants  

The new formula of coefficient generalized alpha for summed scores and scaled scores 

was applied to numerical ability subtest on the cognitive abilities assessment using R 

programming language. The cognitive abilities assessment aims to assess students from 

Kindergarten to 6th grade in three cognitive abilities: Verbal, Numerical and Spatial (Al-

zayat & Almehrizi, 2011). Each ability test has 30 multiple-choice items that are scored 
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dichotomously with 0 (incorrect answer) and 1 (correct answer). The summed scores range 

between 0 and 30 where higher scores indicate higher ability level displayed by the 

child. Four types of scaled scores were reported: PR scores (percentile ranks), RSS 

scores (rounded standard scores with a mean of 100 and standard deviation of 10), NDS 

scores (rounded normalized developmental scores with a mean of 200 and standard 

deviation of 15), NAL scores (five numerical ability levels: very low ability (0-61), low 

ability (7-102), medium ability (11-223), high ability (23-274), and very high 

ability (28-305)). The collected data were for 4206 students from 1st and 2nd grade from a 

representative sample as part of a standardization study of the cognitive abilities 

assessment in Oman. The sample consisted of 1998 males and 2208 females. 

Results 

Table 1 presents means, standard deviations, coefficient generalized alpha and 

coefficient generalized beta, and the square root of the error score variance (standard 

errors of measurement) for summed and scaled scores of numerical ability scores. For 

summed scores and all scaled scores, the estimates resulted from the new equation of 

coefficient generalized alpha were larger than the estimated produced by coefficient 

generalized beta. Results showed that different scales had different reliability estimates 

compared to the summed scores. The reliability estimates scores by the new equation 

of coefficient generalized alpha and coefficient generalized beta for different scaled 

scores had the following descending ordering: PR, summed, RDS, RSS, and NAL scores. 
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Table 1 
Descriptive statistics, coefficient generalized alpha and beta and SEM for summed and 
scaled scores for numerical ability 

Statistics Summed RSS PR RDS NAL 

M 15.6510 99.0221 46.6153 202.7953 2.9318 
SD 5.8560 8.4427 25.0530 15.4383 0.7436 
      

Old   ̂  0.8519 0.9149 0.8420 0.8787 0.9985 

New   ̂  0.8519 0.7869 0.8531 0.8163 0.6588 

  ̂  0.8089 0.7533 0.8057 0.7754 0.6293 
      

Old  ̂      2.2536 2.4629 9.9584 5.3769 0.0288 
New  ̂      2.2536 3.8974 9.6022 6.6169 0.4344 
 ̂       2.5599 4.1934 11.0432 7.3165 0.4527 

The old and the new equations for coefficient generalized alpha for summed scores 

produced equal estimates of reliability (0.8519). For other scaled scores, these two 

equations of the coefficient generalized alpha produced different estimates of 

reliability. The old equation produced estimates that ranged between 0.8420 and 0.9985, 

whereas the new equation produced estimates that ranged between 0.6588 and 0.8531. 

The new equation gave a higher reliability value (0.8531) for PR scores than the old equation 

(0.8420) and a lower value (0.6293) for NAL scores than the old equation (0.9985).  

The estimates of the standard errors of measurement showed similar patterns as 

their corresponding estimates of reliability coefficients. The standard errors of 

measurement associated with the new equation for coefficient generalized alpha were 

always smaller compared to coefficient generalized beta for all scaled scores. 

Table 2 presents non-parametric bootstrap (100 replications) averages, standard 

errors, and 95% confidence intervals for coefficient generalized alpha and beta for summed 

and scaled scores for numerical ability subtest. The standard error of estimates for 

coefficient generalized alpha and beta were small for summed and all scaled scores. The 

lower and higher bounds for the 95% bootstrap confidence interval showed acceptable 
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performance of coefficient generalized alpha and beta for the summed and all scaled scores. 

As expected, the higher bound for the old equation of coefficient generalized alpha for NAL 

scores was larger than 1, which supported the previous discussed problem with the old 

equation. 

Results also showed that there were no overlaps between the confidence intervals 

for the new coefficient generalized alpha and coefficient generalized beta for summed 

scores and all scaled scores except for NAL scores. This could be interpreted that coefficient 

generalized alpha values were significantly larger than coefficient generalized beta values 

indicating that numerical ability test conformed with the assumptions of tau-equivalent 

forms more than the assumptions of classically parallel forms. 

Table 2  
Non-parametric bootstrap averages, SE, and 95% confidence intervals for coefficient 
generalized alpha and beta for summed and scaled scores for Numerical Ability 

 Statistics Summed T-score PR NSS NAL 

Old   ̂ 

Average 0.8517 0.9144 0.8422 0.8791 0.9982 
SE 0.0032 0.0031 0.0029 0.0031 0.0021 
LB 0.8411 0.9061 0.8344 0.8712 0.9904 
HB 0.8600 0.9225 0.8505 0.8863 1.0022 

       

New   ̂ 

Average 0.8517 0.7864 0.8534 0.8167 0.6572 
SE 0.0032 0.0048 0.0030 0.0037 0.0093 
LB 0.8411 0.7739 0.8451 0.8075 0.6314 
HB 0.8600 0.7997 0.8616 0.8251 0.6803 

       

  ̂ 

Average 0.8087 0.7525 0.8059 0.7760 0.6285 

SE 0.0044 0.0060 0.0042 0.0049 0.0103 

LB 0.7954 0.7370 0.7938 0.7655 0.5985 

HB 0.8193 0.7701 0.8157 0.7879 0.6519 
SE: bootstrap estimation standard error, LB & HB: Lower bound and higher bound for 95% bootstrap CI 

Application 2 

Measures and Participants  

The second data set was the reasoning subtest of the Learning Disabilities Diagnostic 

Inventory (LDDI). The tool was developed by Don Hammill and Brian Bryant in 1998 
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(Hammill and Bryant, 1998) and was standardized on a national sample of Omani students 

in Oman in 2019 (El-Keshky & Emam, 2015; Emam et. al., 2021). LDDI is a teacher/clinician 

rating scale that seeks to systematically identify specific learning disabilities based on a 

child's intrinsic processing difficulties by observing the child's day-to-day academic 

behaviours.. It has six independent subtests; each contains 15 items focusing on the 

neuropsychological aspects of specific learning disabilities as an intrinsic disorder. Teachers 

rate their students on each item using nine score points (1 to 9) reflecting the incidence 

rates of each behavior (from never to always). The summed scores for the intrinsic 

disorder score range between 15 and 135 where higher scores indicate higher disorder. 

Data were collected for 413 students from 1st and 2nd grades from all over the 

country as part of a standardization study of the LDDI in Oman. The sample consisted of 200 

males and 213 females. In addition to the summed scores, four scaled scores were used for 

interpretation purposes. They were PR scores (percentile ranks ), T-scores (rounded 

standard scores with a mean of 50 and standard deviation of 10), stanine scores (scores 

between 1 and 9), and reasoning diagnostic category (RDC) scores (three-band 

categorization: Normal (15-291), Borderline (30104), Abnormal (105-1353)).  

Results 

Table 3 displays means, standard deviations, coefficient generalized alpha and 

generalized beta, and the square root of error score variance for summed and scaled 

scores of the reasoning subscale. For summed scores and all scaled scores, the 

estimates resulting from the new equation of coefficient generalized alpha were larger 

than the estimates produced by the coefficient generalized beta. Results showed that 

different scaled scores had different reliability estimates than the summed scores. The 

reliability estimate scores by the new equation of coefficient generalized alpha and 
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coefficient generalized beta for different scales are in descending order as follows: 

summed, T-scores, PR, stanine, and RDC scores. 

Coefficient generalized alpha for summed scores was 0.9831. However, the two 

equations of coefficient generalized alpha for all scaled scores produced different 

estimates of reliability. The old equation produced estimates that ranged between 0.9555 

and 1.0678; whereas the new equation produced estimates that ranged between 0.9187 

and 0.9824. The old equation gave an estimate of the coefficient generalized alpha for 

RDC scores exceeding 1.  

The estimates resulting from the new equation of generalized alpha for summed 

scores and all scaled scores were larger than the estimates produced by coefficient 

generalized beta. However, the old equation of generalized alpha showed mixed 

results. They were larger than coefficient generalized beta for some scaled scores (e.g., 

summed, T-scores, RDC); but they were smaller for other scores (e.g., PR, Stanine). The 

standard errors of measurement associated with the coefficient generalized alpha were 

smaller than the coefficient generalized beta and showed similar patterns across 

different scaled scores. 

Table 3 
Descriptive statistics, coefficient generalized alpha and beta and SEM for summed and 
scaled scores for LDDI Reasoning        

Statistics Summed T-score PR Stanine RDC 

M 75.1162 49.9831 50.3487 5.0169 2.1695 
SD 33.5623 10.0299 29.1908 2.6008 0.5445 
      

Old   ̂ 0.9831 0.9817 0.9703 0.9555 1.0678 

New   ̂ 0.9831 0.9824 0.9785 0.9675 0.9187 

  ̂  0.9818 0.9811 0.9769 0.9660 0.9186 
      

Old  ̂      4.3687 1.3555 5.0344 0.5489 - 
New  ̂      4.3687 1.3324 4.2801 0.4685 0.1552 
 ̂       4.5295 1.3794 4.4354 0.4797 0.1553 

- error variance is negative and there is no SEM. 
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Table 4 presents non-parametric bootstrap (100 replications) averages, standard 

errors, and 95% confidence intervals for coefficient generalized alpha and beta for summed 

and scaled scores for the LDDI Reasoning. Results showed that coefficient generalized alpha 

and beta were consistent for summed and all scaled scores because the standard errors 

were small. The 95% confidence intervals showed acceptable lower and higher bounds for 

all scaled scores. The old equation of coefficient generalized alpha for RDC scores had both 

lower and higher bounds exceeding 1. 

Results also showed that the confidence intervals for the new coefficient generalized 

alpha and coefficient generalized beta had large overlaps for summed scores and all scaled 

scores. This could be interpreted that coefficient generalized alpha values were similar to 

coefficient generalized beta values indicating that the assumptions of classically parallel 

forms might describe the structure of the LDDI reasoning. 

Table 4 

Non-parametric bootstrap averages, SE, and 95% confidence intervals for coefficient 

generalized alpha and beta for summed and scaled scores for LDDI Reasoning 

 Statistics Summed T-score PR Stanine RDC 

Old   ̂ 

Average 0.9833 0.9818 0.9699 0.9549 1.0673 
SE 0.0014 0.0014 0.0057 0.0062 0.0026 
LB 0.9789 0.9783 0.9563 0.9389 1.0572 
HB 0.9861 0.9853 0.9805 0.9684 1.0706 

       

New   ̂ 

Average 0.9833 0.9824 0.9783 0.9674 0.9199 
SE 0.0014 0.0014 0.0018 0.0025 0.0110 
LB 0.9789 0.9790 0.9742 0.9619 0.8928 
HB 0.9861 0.9857 0.9818 0.9737 0.9437 

       

  ̂ 

Average 0.9820 0.9810 0.9767 0.9658 0.9198 

SE 0.0016 0.0015 0.0020 0.0027 0.0109 

LB 0.9770 0.9775 0.9724 0.9600 0.8928 

HB 0.9850 0.9847 0.9805 0.9726 0.9437 
SE: bootstrap estimation standard error, LB & HB: Lower bound and higher bound for 95% bootstrap CI 
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Conclusions and Implications 

The paper examined the commonly used expressions of coefficient alpha with test 

summed scores and argued that although these expressions are correct when estimating 

reliability for summed scores, they are not sufficient to correctly extend coefficient alpha to 

estimate the reliability of nonlinearly-transformed scaled scores such as percentile ranks, 

normalized standard scores, and stanines. The paper argued that these common equations 

of coefficient alpha erroneously led to a wrong extension to coefficient generalized alpha in 

a paper published by Almehrizi (2013).   

As an alternative, the paper treated coefficient alpha as a complement of the ratio of 

two unbiased estimates of summed score variance: conditional summed score variance 

assuming uncorrelated item scores (gives the error score variance) and unconditional 

summed score variance incorporating intercorrelated item scores (gives the observed score 

variance). This reconceptualization of coefficient alpha should facilitate a correct extension 

to estimate reliability of nonlinearly scaled scores. The new equation of coefficient 

generalized alpha is also the complement of the ratio of two unbiased estimates of the 

scaled score variance: conditional scaled score variance assuming uncorrelated item scores 

and unconditional scaled score variance incorporating intercorrelated item scores.  

To estimate the reliability of scaled scores, the old equation of coefficient generalized 

alpha (equation 2) should not be used and, instead, should be replaced with the new 

equation of coefficient generalized alpha (equation 15). The two data sets in this paper 

showed that the old equation could have unacceptable values and could obtain values 

exceeding 1 for some scaled scores especially with a few scaled scores such as NAL scores (5 

scores for numerical ability levels) and RDC scores (three scores of reasoning disability 

categories). 
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The reliability is not just a property of test items, but also a property of the scale 

being used for test scores when the transformation is nonlinear. Each nonlinear 

transformation of test scores produces different reliability coefficients, which were different 

from the reliability for summed scores. The reliability values for scaled scores could be 

either smaller or larger than for summed scores. The two applications presented earlier 

(cognitive assessment and psychological assessment) showed that all scaled scores had 

different reliability values and they were smaller than those for the summed scores except 

the reliability for PR scores in the numerical ability assessment. Scaled scores with a few 

levels such as NAL scores and RDC scores showed generally smaller values of coefficient 

generalized alpha and beta than other scaled scores with more scores such as percentile 

ranks and NSS. These results were recurrent when item response theory models were used 

(Kolen et. al., 1996; Kolen et. al., 2012). 

The reliability values depend on the transformation function and the interaction 

between the transformation functions and item intercorrelations. Transformation of test 

scores makes them have different averages and variances for different transformation 

functions. The changes in the test score variance occur with both unconditional and 

conditional test score variances. When the transformation function is linear, the ratio of 

changes in the unconditional and the conditional test score variances is equal to the ratio of 

the two variances for the summed scores and, hence, the reliability coefficients of test 

summed score and test linearly-scaled scores become equal. However, when the 

transformation function is nonlinear, the changes in unconditional and conditional test 

score variances are not equal and, hence, the ratio of the two variances for the new scaled 

scores is different from the ratio of the two variances for the summed scores resulting on 

different reliability for the scaled scores compared to summed scores. Each type of scaled 
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scores will have a different ratio of these two test score variances and hence different 

reliability estimates. 

The presented reconceptualization of coefficient generalized alpha is similar to 

coefficient beta reliability for summed scores and its generalization to scaled scores. Both 

coefficient beta reliability and its generalization are also the complement of the ratio of two 

unbiased estimates of the summed/scaled score variance: conditional summed/scaled score 

variance assuming uncorrelated item scores and unconditional summed/scaled score 

variance incorporating intercorrelated item scores. The difference between coefficient alpha 

and coefficient beta (and their generalization for scaled scores) is contingent upon the 

conditional summed/scaled score variances assuming uncorrelated item scores that give the 

error summed/scaled score variance. Coefficient beta uses the conditioning of proportions 

of item score points from response pattern for each examinee, whereas coefficient alpha 

uses three conditioning matrices of proportions of item score points. These are: 1) 

proportions of item score points from response pattern for each examinee, 2) proportions 

of item score points obtained from response patterns for each item, and 3) proportions of 

item score points from response patterns for the whole data matrix of examinees by items.  

Coefficient alpha and coefficient beta (and their generalizations) have different true 

score variance and error score variance. The true score variance in coefficient beta is equal 

to the true score variance in coefficient alpha minus the item effect variance and the error 

score variance in coefficient beta is equal to the error score variance in coefficient alpha 

plus the item effect variance. As a result, coefficient beta is smaller than coefficient alpha 

(and their generalizations) by the ratio of the item effect variance and observed score 

variance. This result agrees with previous literature about the error score variance (such as 

Brennan, 2001; 2011; Barbera et. al., 2021; Raykov, 1998).   



22 
 

Both coefficient alpha and coefficient beta (and their generalizations) use the classical 

definition of reliability and both assume that all items assess a common construct, the error 

scores are uncorrelated and the true scores are independent from the error scores. Hence, 

with both coefficients, the observed score variance is equal to the sum of true score 

variance and error score variance.  

Equation (24) through equation (27) reveals that coefficient alpha and coefficient beta 

(and their generalizations) have different assumptions about the definition of true scores 

and error scores. Coefficient beta (and coefficient generalized beta) assumes that items are 

not differentiated based on their variances (equal item variances) and not differentiated 

based on their averages (equal item averages). This denotes that coefficient beta follows 

classically parallel assumptions. So coefficient beta considers any differences in item 

variance and item averages are not part of true scores but sources of error scores. Hence, 

the error score variance in coefficient beta incorporates differences of both item averages 

and item variances. 

On the other side, coefficient alpha (and coefficient generalized alpha) assumes that 

items are not differentiated based on their variances (equal item variances) but 

differentiated based on their averages (unequal item averages). This denotes that 

coefficient alpha follows essentially tau-equivalent assumptions. So coefficient alpha 

considers any differences in item averages are part of true scores and not a source of error 

scores, whereas it considers any differences in item variance a source of error scores and 

are not part of true scores. Therefore, the error score variance in coefficient alpha excludes 

differences in item averages while it incorporates differences of item variances.  

This implies that coefficient alpha requires integrating item effect variance (the 

difference in item averages) in the operational definition of the construct assessed by the 
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test, whereas coefficient beta excludes it from the operational definition of the construct 

assessed by the test. Hence, practitioners should specify their operational definition of the 

measured construct by the test so they can determine which reliability coefficient to use. 

Results of the two applications showed also that the estimates of coefficient alpha and 

coefficient beta in the numerical ability assessment were significantly different given that 

there were no overlaps between their bootstrap confidence intervals for summed scores 

and scaled scores. Therefore, it could be inferred that coefficient alpha gave a better 

estimate of the reliability of numerical ability test. For LDDI reasoning, the bootstrap 

confidence intervals for the estimates of coefficient alpha and coefficient beta overlapped 

for summed scores and scaled scores indicating that coefficient beta was a more suitable 

estimate of reliability coefficient. 

Although the recursion formula outlined earlier can be used to obtain the conditional 

probability mass functions for summed scores for tests of items with either equal or 

different scoring points, both coefficients alpha and coefficient beta (and their 

generalizations) limit the application of this recursion formula to only those tests of items 

with similar item scoring points. For tests with mixed item formats (e.g., multiple choice 

items and essay items), the assumptions of coefficient alpha and beta are violated and, 

hence, they cannot be used to estimate reliability for summed scores or scaled scores in 

such tests.  

Future research should investigate the use of the new reconceptualization of coefficient 

alpha and generalized alpha for different scaled scores with various assessment tools in 

different fields such as educational and achievement tests, medical assessments, social and 

economic studies, and engineering and industrial fields. There is a need for simulation 

studies to assess the statistical properties of coefficient generalized alpha and beta for 
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different scaled scores under different test conditions including test length, item scoring, 

sample size, score distribution, and conformity to assumption of test forms. In addition, the 

effect of estimating coefficient generalized alpha for different scaled scores should be 

investigated when its assumptions are violated including correlated error scores and 

dimensionality.  
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