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Abstract 

In this paper, we develop a two-stage analytical framework to investigate farming 

efficiency.  In the first stage, data envelopment analysis (DEA) is employed to estimate 

the efficiency of the farms and conduct slack and scale economies analyses.  In the 

second stage, we propose a stochastic model to identify potential sources of inefficiency.  

The later model integrates within a unified structure all variables, including inputs, 

outputs and contextual factors.  As an application ground, we use a sample of 60 farms 

from the Batinah coastal region, an agricultural area representing more than 53% of the 

total cropped area of Oman.  The findings of the study lay emphasis on the inter-

dependence of groundwater salinity, irrigation technology and farm’s operational 

efficiency, with as a key recommendation the necessity for more regulated water 

consumption and a readjustment of the government’s subsidiary policies.   
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1. Introduction 

Performance analyses of agricultural production systems have usually been handled 

through ratios (Tipi et al., 2009), which reflect particular operational aspects of decision-

making units (DMUs). Therefore, these ratios are not enough encompassing for an 

accurate estimation of potential gains (Fraser & Cordina, 1999).  One alternative to the 

ratios is data envelopment analysis (DEA) which is a frontier efficiency approach. 

The first research work that used the frontier concept to measure the technical efficiency 

of agricultural production is due to Ray (1985) and Färe et al. (1985), who applied DEA 

to assess the performance of the agricultural sector in West Bengal and the Philippines, 

respectively.  Many other researchers followed, including Lim & Shumway (1992), Ray 

& Bhadra (1993). Tauer (1995), Sharma et al. (1997), Tauer & Stefanides (1998), Fraser 

& Cordina (1999) and more recently, Hosseinzadeh-Bandbafha et al. (2016) Nabavi-

Pelesaraei et al. (2016).  All these early studies have been conducted in one-stage, via 

single DEA models.   

A new trend based on a two-stage approach emerged with the work of Coelli et al. 

(2002), Dhungana et al. (2004), Chaaban et al. (2005), Galanopoulos et al. (2006), Ören 

& Alemdar (2006), Aramyan et al. (2006), Hansson (2007), Speelman et al. (2008), 

Kelly et al. (2012) Gedara et al. (2012), Oukil and Zekri (2014), Li et al. (2017), and Al-

Mezeini et al. (2021), to mention just a few of the relevant studies.  A typical two-stage 

approach starts with an evaluation of farm performance using a DEA model that 

employs the input consumption and output production of each farm as data.  This first 

stage is confined to input variables that are under the control of the farmer over the time 

period of consideration.  In the second stage, contextual variables are used as 

explanatory variables in a regression model whose regressands are the efficiency scores 

of the farms.  Conversely, contextual variables are factors over which the farmer has no 

control during the same period but may influence the performance of the decision 

process (Oukil and Al-Zidi, 2018). The regression analysis is, therefore, meant to 

identify which of these variables contribute most significantly towards the efficiency of 

the farms.   

In the present study, we use the two-stage approach to investigate farming efficiency and 

its determinants in Northern-Oman.  For the second stage analysis, we propose a 
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methodology integrating all variables (both endogenous and exogenous) within a unified 

stochastic model.  A sample of 60 farms from the Batinah coastal region, an agricultural 

area representing more than 53% of the total cropped area of Oman, is used.  Most of the 

locally produced vegetables supplying the capital and coastal city markets are produced 

in Batinah, where production is exclusively based on groundwater pumping.  To the best 

of our knowledge, the only study that addressed a similar issue was conducted two 

decades ago (Zaibet & Dharmapala, 1999).  As such, we will also assess, through our 

investigation, potential performance change and pinpoint pertaining causes.  All findings 

are, subsequently, translated into directions for future field decisions and policy design.   

In the light on the above, the contribution of our paper is many-fold. (1) The farming 

efficiency in Oman is evaluated through an empirical analysis based upon a respondent 

sample that is large enough to reflect the state of the local agricultural sector. (2) A slack 

analysis is implemented to recognize the resources that would possibly improve farms’ 

performance if used in an optimal way. (3) A new methodology is developed to identify 

the environmental factors that are the most likely sources of farm inefficiency.  

The remainder of the paper is structured as follows.  In the next section, we outline the 

empirical methodology employed in our analysis and formally define the applied 

efficiency measures, including aggregate, technical and scale efficiencies.  Next, we 

describe the application context and appropriate variables for the case study.  The inputs, 

the output and the farm-specific factors are presented with relevant statistics before the 

application of DEA models and discussion of the findings.  At another stage, we conduct 

an econometric analysis to establish the potential correlation between the farm-specific 

factors and efficiency levels and provide insights related to the improvement of 

efficiency.  We conclude with recommendations and identify possible venues for future 

investigations.  

 

 

2. Methodology 

Data envelopment analysis (DEA) is a non-parametric approach for evaluation of the 

relative efficiency of DMUs on the grounds of an efficient production frontier (Amin 

and Oukil, 2019).  DEA enables not only the identification of efficiency ratios but also 
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estimation of the allowable reduction of the inputs consumed by an inefficient DMU 

without altering any of its outputs.  The DEA models that are most frequently applied in 

agriculture are the CCR model (Charnes et al. 1978), which assumes constant returns to 

scale (CRS), and BCC model (Banker et al. 1984), which allows variable returns to scale 

(VRS).  These models are formulated as linear programmes (LPs) and are described 

briefly below. 

 

2.1. DEA models 

Assume a set of K farms, with each farm k being defined with N inputs x and M outputs 

y. In reference to the underlying production technology, farm (xk, yk) is fully defined 

with the observed values of xik and yjk , with i=1,.., N and j=1,.., M.  To estimate the 

efficiency score  of farm (x0, y0) and set production targets for inefficient farms, the 

input-oriented formulation of the CCR model can be represented as follows (Oukil, 

2018).  
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The efficiency   of farm (x0, y0) represents the minimal radial reduction of inputs that is 

required to reach the efficiency frontier for a specified level of outputs. λ measures the 

weights of peers in producing the projection of farm (x0, y0) on the efficiency frontier.  

Constraints (2) and (3) state that reference points are linear combinations of the input 

and output values of efficient peers for farm (x0, y0).  (CCR) represents an LP model with 

N+M constraints (not counting the non-negativity constraints) and must be solved K 

times, once for each farm.  

BCC model can be obtained from (CCR) by adding the convexity constraint 

guaranteeing that only weighted averages of efficient farms enter the reference set, i.e., 
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CCR and BCC models are both formulated with the implicit assumption that the 

assessed farms operate within homogeneous environments, which presupposes that only 

variables representing proper inputs are an integral part of the production technology 

(Soltani et al. 2021; Oukil and Govindaluri, 2020). 

 

2.2. Scale efficiency 

Let *

CCRθ  and *

BCCθ  denote the aggregate and technical efficiency scores of farm (x0, y0) 

calculated using CCR and BCC models, respectively. The scale efficiency SE of a farm 

is the ratio of the aggregate efficiency *

CCRθ  over the technical efficiency *

BCCθ .  If a 

farm’s SE is 1, the latter is declared scale efficient, indicating that its operating scale size 

is optimal (Oukil and El-Bouri, 2021). Following Banker et al. (2004), if λ
*
 is an optimal 

solution of CCR model and  1
1

 

K

k k

* , we can say that the farm exhibits decreasing 

returns to scale (DRS), implying that the farm is operating at a scale greater than the 

most productive scale size of the inputs.  Conversely,  1
1

 

K

k k

*  suggests that the 

farm is operating in the increasing returns to scale (IRS) region, at a scale smaller than 

the most productive scale.  The managerial interpretation of the latter inference is that 

the average productivity can be increased if the level of outputs increases as a result of a 

proportional increase in the consumption of the inputs.  This can be achieved by 

transferring resources from farms operating at DRS to those operating at IRS 

(Boussofiane et al. (1992).  Constant returns to scale, i.e., 1
1

 

K

k k

* , imply that the 

farm is scale efficient.  

 

3. The Batinah case study 
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The selection of the Batinah region as a case study was motivated by its major 

contribution to agricultural production in Oman.  The Batinah agricultural area 

represents over 53% of the total cropped area of Oman, where most of the vegetables 

supplying the capital and coastal city markets are produced.  Approximately 80% of the 

farms cover an area of less than 2.1 hectares, and only 1% of the farms have an average 

size above 21.6 hectares.  Date palms represent the most important agricultural product, 

followed by vegetables and field crops (MAF and ICBA, 2012).  These specifications 

comply with the DEA assumption that all DMUs should operate in a relatively 

homogeneous region, hence preventing undesirable effects of climatic and bio-physical 

constraints on the technical efficiency of farms (Mohammadi et al., 2011; Oukil, 2021).   

Questionnaires were distributed to farmers to collect data on their farms.  Among a total 

of 60 farmers interviewed, 15 were discarded due to missing information. Of the 

remaining 45 farms, 15 are located in Barka Governorate, 16 in Musanaa, 5 in Al-

Suwaiq, and 9 in Shinas.   

 

3.1. Input and Output variables 

The adequate choice of inputs and outputs for a DEA based benchmarking problem lies 

often on the dicta “less is better” and “more is better”, respectively (Cook et al., 2014).  

Several crops are cultivated in Batinah, including date, mango, banana, lime, melon, 

watermelon, tomato, onion, pepper, potato, cucumber, okra, tobacco, and grass. The 

information collected for each crop comprises the cultivated area as well as the 

corresponding yield, leading initially to a total of 14 inputs and 14 outputs.  If we 

assume that these are the only input and output variables for each farm, clear efficiency 

discrimination cannot be achieved unless the number of farms   satisfies the 

inequality )](3max[  M+NMN,   (Cooper et al., 2002), that is, 196  with 

N=M=14.  Given the number of farms available, that is, =45, we decided to consider 

the aggregates instead of individual crop values.  Therefore, the variables used to 

estimate the efficiency levels are as summarised in Tables 1 and 2.  The “Cropped area” 

measures the area of the farm allocated to all crops.  “Labour” includes both household 

and hired workers, and “Electricity consumption” includes the costs of electricity for 

pumping water from a well and for pressurising the water into the irrigation system.  
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There is greater data accuracy in using “Electricity consumption” than water quantities, 

which are often estimated on the basis of irrigation application standards and the 

farmer’s irrigation schedule.  The only output variable is “Revenue”, which is the 

aggregate of all crop yields sold at market prices.   

 

 [Insert Table 1 about here] 

 

3.2. Contextual variables 

The contextual variables are farm-specific factors that may affect farm efficiency but are 

not incorporated into the DEA model.  These factors are used as explanatory variables to 

conduct the second stage of the study.  According to Bozoğlu & Ceyhan (2007), farm 

size, age, experience and education level of farmers are among the most commonly used 

variables in previous studies.  In our study, the average age of the farmers was 52 years. 

Among the 45 farmers surveyed, 5 were young (<35 years), 24 were middle-aged (35-60 

years) and 16 were elderly (>60 years).   

 

[Insert Table 2 about here] 

 

The farms were classified as small, medium or large.  The statistics in Table 2 show that 

the proportion of farms in each size class was nearly the same.  The frequency 

distribution of the variable “Education level” revealed that most of the selected farmers 

(42 farmers) were either illiterate or had completed some schooling, while only 3 of the 

farmers were university graduates.  On average, the farmers had received approximately 

5.6 years of education.  The variable “Irrigation technology” indicates whether a farmer 

uses only the flood system or more advanced irrigation systems, such as drip, bubbler 

and sprinkler systems.  For the first time, water salinity is measured and introduced as a 

factor potentially affecting farm efficiency.  Water salinity indicates the salt 

concentration in the irrigation water. The higher the salinity of the water, the more 

limited the crop choice is at a given farm and the lower the yield is.  Three salinity levels 

were chosen based on the outcome of experiments conducted in the Al-Rumais 
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Experimental Centre to test the performance of crops against water salinity.  Apparently, 

there are equal numbers of farms with high levels and low levels of water salinity.   

The full dataset is available from the authors. 

 

4. Efficiency results 

The solutions for the CCR and BCC models presented were obtained using a C++ code 

embedded in IBM-ILOG CPLEX version 12.6.  This code computes the optimal 

efficiency scores  
*
 for each farm, in addition to the corresponding optimal solution λ

*
 

and the slack values.   

 

[Insert Table 3 about here] 

 

The input variables used in the DEA models were x1 (cropped area), x2 (labour) and x3 

(electricity consumption).  As shown in Table 3, the average efficiency scores generated 

were 0.42 and 0.75 using CRS and VRS assumptions, respectively.  

A technical efficiency of 0.42 means that, on average, the farms could reduce their inputs 

by 58% and still produce the same level of output.  These values were compared to the 

results produced in a similar study, conducted by Zaibet & Dharmapala (1999) involving 

a sample of 35 farms, using labour, capital and water as inputs.  The mean technical 

efficiency scores were 0.49 and 0.83 under CRS and VRS, respectively, which are 

slightly higher than the values obtained in the present study.  This may suggest 

deterioration of performance, most likely due to further division of land, leading to even 

smaller farm sizes, or to increased salinity of irrigation water.  Only 9 farms out of 45 

(20%) were found to be efficient under VRS and 2 farms under the CRS assumption.  

Nearly 65% of the farms showed a performance below 0.40 under CRS.  The average 

scale efficiency of 0.57 indicated that the majority of farms were operating at close to 

half their optimal size.  This finding supports the conclusion that farm size is one of the 

major problems in farming in Oman.  According to the agricultural census of 2004/2005, 

80% of the farms in Batinah have an area of less than 2.1 hectares, whereas only 66% of 

the farms covered less than 2.1 hectares in 1993 (MAF, 2006).  
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[Insert Table 4 about here] 

 

Table 5 shows that, over the four Governorates of Batinah, most of the efficient farms 

are located in Musanaa, even though the mean efficiency scores for this Governorate’s 

farms are the second lowest.  The highest means are reported for Shinas farms. 

 

[Insert Table 5 about here] 

 

4.1. Scale economies 

Furthermore, we calculated the scale efficiency and estimated returns to scale.  Table 6 

provides some characteristics of the farms with respect to returns to scale.  The results 

show that 43 farms out of 45 were experiencing increasing returns to scale; that is, 95% 

of the farms were not using their resources properly, implying a high level of 

inefficiency.  The productivity of these farms can, on average, increase through a 

proportional increase in the use of inputs x1, x2 and x3.  The mean farm size and the mean 

annual revenue were 16.85 hectares and $54,867/ha, respectively, for the optimal farms.  

The largest optimal farm exhibited revenue of $90,297/ha.   

 

[Insert Table 6 about here] 

 

4.2. Slack analysis 

To estimate the excess inputs, we calculated the slack variables corresponding to each 

resource used by each farm.  The mean slack values are summarised in Table 7, together 

with the average use of inputs and the corresponding proportions.   

 

[Insert Table 7 about here] 

The largest excess input use was detected for electricity consumption.  In this report, 

electricity consumption is used as a proxy for groundwater pumping, due to the absence 

of water metering.  Thus, this finding reflects an excess use of groundwater, confirming 
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the assumption of misuse of resources.  In fact, 26.7% of the farms might be able to 

reduce their consumption of electricity, viz. water, by 27.4% on average, while 

maintaining an unchanged production level.  This indicates that only one-quarter of the 

farmers were misusing groundwater.  However, we should keep in mind that this study 

addresses relative efficiency rather than absolute efficiency. Theoretically, one should 

expect most farmers to misuse groundwater given the absence of property rights.  

Groundwater is a common property resource characterised by an absence of exclusivity 

over the resource (Burt & Provencher, 1993; Zekri, 2009; Zekri et al. 2017).  Labour is 

the second input that is not used efficiently.  The input slack for labour showed that 

21.3% of labour could be reduced while maintaining the same level of revenue.  The 

inefficient use of labour was mainly due to the rigidity of the labour market.  Farmers 

must rely primarily on permanent expatriate labour due to the quasi-absence of seasonal 

labour.  Lastly, the cropped area could be reduced by up to 7.4% without reducing the 

revenue obtained.  Given that agriculture is exclusively irrigated in Oman, any 

improvement of land efficiency would result in improved groundwater efficiency. 

 

5. Performance drivers 

Farm’s efficiency might also be affected by context related factors, such as water 

quality, the age of farmers and their education level, farm size, and irrigation 

technology.  The second-stage analysis is aimed at assessing the cross-sectional 

association of these contextual variables with the DEA efficiency estimates.  A large 

number of topical papers, including Hoff (2007), McDonald (2009), and Ramalho et al. 

(2010), argue that the second stage should use either log-linear or Tobit models which 

rely on conventional methods for inference, i.e., ordinary least squares (OLS) and 

maximum likelihood (ML), respectively.  

Let z1, z2, z3, z4 and z5, denote farm size, water salinity, type of irrigation technology, the 

education level, and the age of the farmer, respectively.  Using the log-linear model 

proposed by Banker & Natarajan (2008), the efficiency score θ  writes as: 

ωzββθ
p pp   

5

10ln     (6) 
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where 5 ,...,1 , pβp  are the model’s parameters, and ω  is the error term which follows 

a two-sided distribution. Assuming normality, ω ),(
20 N .    

The application of model (6) to our case study provides the results shown in Table 8.   

 

[Insert Table 8 about here] 

 

The overall significance level is only 22.97% and the adjusted 2R =4.82%, indicating 

that the log-linear model fails to show any relationship between the farm efficiency and 

the contextual variables.  This result is not surprising since the application violates the 

requirement set for model (6) to yield consistent estimators of the impact of contextual 

variables, that is, “the contextual variables to be independent of the input variables”.  In 

the case of our study, some inputs and contextual variables might be practically 

correlated, such as irrigation technology and electricity consumption, though they are 

hypothetically addressed at separate stages through different models.   

As a remedy, we develop a model that enables integrating the contextual variables 

and the input variables within a unified framework.   

Let y represent the output variable of the empirical study, i.e., “revenue”.  Assuming a 

Cobb-Douglas production function with the input variables x1, x2 and x3,  

 exy
i

i

i



3

1

0      (7) 

where i is the partial elasticity of output y with respect to the input xi, for i=1,..3, and  

is the stochastic disturbance term (Gujarati, 2003).  The random variable  is usually 

generated by a process that involves a pure random disturbance v and a disturbance u 

that can be attributed to the factors influencing the efficiency (see, e.g., Coelli et al., 

1998), that is,  uv  .  Under normality assumption,   ),( 220 uvN   .  

Using an exponentiation of model (6) with simple mathematical combinations involving 

equation (7), we can derive the following formula: 

)exp()exp(/ ωzβxβθy
p pp

i

i
i   



  5

1

3

1

00  (8) 
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Setting θyy /
*  , )exp(

*

000 ββ    and ω  * , and log-transforming the formula, 

we obtain: 

***
lnlnln    

5

1

3

10 p ppii i zβxβy   (9) 

Equation (9) represents a stochastic production function that incorporates both the input 

variables and the contextual variables into a single linear model. Under normality 

assumption, *  ),( 220   N .  

Under these conditions, OLS can be used to estimate the model’s parameters and the 

OLS estimators are equivalent to the maximum likelihood estimators (MLE) and, 

therefore, are asymptotically efficient in the class of all regular estimators.  We used R 

software for statistical analysis to estimate the parameters of model (6) based on the 

dataset for the 45 farms.   

[Insert Table 9 about here] 

The p-value of the overall significance test is nearly zero (1.67x10
-19

).  Hence, the 

multiple regression relationship is significant.  The value of the adjusted multiple 

coefficient of determination reveals that 92.5% of the variability in *ln y  is explained by 

ixln ’s and pz ’s, meaning that the estimated multiple regression equation fits the data 

very well.  Furthermore, RTS=1.671 indicates that the entire industry displays increasing 

returns to scale.  

With respect to the individual coefficients, the results show that the variables farm size 

and education level were not significant, refuting the outcome of the Tobit regression 

analysis as well as the DEA analysis itself.  However, the variables water salinity and 

irrigation technology appeared to be achieving increasing significance, alongside the 

input variable electricity consumption.  Interestingly, these three variables are, in 

practice, intimately related to groundwater resource management. Modern irrigation 

technology is thought of as an instrument for increasing irrigation efficiency and 

reducing the pressure on groundwater pumping and, hence, water salinity.  However, the 

introduction of modern irrigation to Omani farms has resulted in an increase in the 

irrigated area and greater intensification during summer (Zekri, 2008).  The outcome has 

been an increase in groundwater pumping, which is opposite the expected result.  

Additionally, the negative coefficient of irrigation technology was unexpected, as 
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improvement of irrigation efficiency would result in higher income.  Lastly, an increase 

in water salinity reduces farm efficiency.  As a consequence, we can confirm that the 

variables water salinity and irrigation technology are the key determinants of efficiency 

in the context of the agricultural sector in Oman.  These results are consistent with what 

was expected from an agricultural perspective and are informative for water 

management uses.  In fact, water salinity is the environmental factor that is currently 

affecting the agricultural sector the most severely (Zekri, 2008; Naifer et al. 2011; MAF 

and ICBA 2012).  

 

6. Conclusion and recommendations  

The evaluation of the technical efficiency of a sample of farms in the Batinah coastal 

region and discernment of exogenous factors affecting the efficiency values of the farms 

were the two objectives of the present study.  To this end, a two-stage approach was 

applied.  The analysis of technical efficiency scores revealed a strikingly low farming 

efficiency, which deserves attention.  The average efficiency was only 0.42, implying 

that the farms could reduce their inputs by 58% without decreasing their output level.  

More explicitly, this finding indicates that 58% of current agricultural resources are not 

contributing value to farming revenue.  Furthermore, the average scale efficiency of 0.57 

indicates that the majority of farms are operating at half their optimal size.  The results 

show clearly that farm size in Batinah should be brought up to the optimum of 

16.85 hectares.  Such a target could be achieved through the support of agricultural 

associations and common management of small farms.  This study also revealed that the 

government subsidisation of modern irrigation technology has not contributed to 

reducing water pumping and groundwater salinization.  The excess electricity 

consumption, viz. water pumping, reaches 19.7% on some farms.  It therefore appears 

obvious that groundwater, as a common resource pool characterised by an absence of 

exclusivity, will not be controlled through the simple adoption of irrigation technology.  

Thus, controlling groundwater pumping is a requirement for developing a sustainable 

agricultural sector in Batinah. This could be achieved through the implementation of a 

regulation stipulating the allocation of a groundwater quota per farm.  Labour efficiency 
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is another issue that should be addressed through measures that are sufficiently flexible 

to allow workers mobility during picking periods and via an associative type of farming.   

Regarding methodology, this study emphasises the importance of using different 

analytical methods as complimentary tools to reach plausible conclusions.  The analysis 

of the contextual factors affecting efficiency was conducted via an integrated stochastic 

model that is based on the assumption of Cobb-Douglas production function.  Therefore, 

a more extensive analysis might be needed to assess the robustness of model using other 

parametric production functions, based in part on the work of Arnold et al. (1996), 

Bardhan et al. (1998), Banker & Natarajan (2008), and Johnson & Kuosmanen (2012).  

Future research may also consider bootstrapping approaches (Simar & Wilson, 2011) at 

the efficiency evaluation stage (Sow et al., 2016) as well as for the second stage (Oukil 

et al., 2016).  In addition, it is of interest to devise an approach that might employ the 

efficiency score, itself, as a contextual variable to evaluate the influence of managerial 

competency on the farm’s performance.  Another venue for future investigation pertains 

to full ranking of the farms, using more appropriate DEA models, such as DEA cross-

efficiency (e.g., Oukil, 2020a; b). Moreover, instead of handling the farms’ performance 

improvement individually, it is worthwhile exploring potential effects of farms’ mergers 

(Amin and Oukil, 2019).  
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Table 1. Summary statistics of variables used for efficiency measurement 

Variables  Unit Mean SD Min. Max. 

Output         

 Revenue $ /year 7,601 14,111 375 90,296 

Inputs 

     Cropped area hectares 2.94 4.57 0.21 30.35 

Labour  hours/year 1,496 1,109 120 4,800 

Electricity consumption $ /year 322 266 89 1,485 

Farm specific factors 

     Age categorical 2.13 0.63 1 3 

Farm size categorical 2.02 0.81 1 3 

Education level categorical 2.62 1.19 1 5 

Irrigation technology categorical 1.58 0.89 1 4 

Water salinity categorical 2.00 0.85 1 3 

 

Table 2. Characteristics of the farm specific variables 

 

 

Variable Value Description Frequency 

Age 

1         Age < 35 yo 5 

2 35 ≤ Age ≤ 60 yo 24 

3         Age > 60 yo 16 

Farm size 

1       Area ≤ 2 ha 14 

2 2 ≤ Area ≤ 5 ha 16 

3       Area > 5 ha 15 

Education 

level 

1 illiterate 10 

2 able to write and read 10 

3 completed primary school 15 

4 completed secondary school 7 

5 university graduate 3 

Irrigation 

technology  

1 only traditional irrigation system 0 

2 one type of advanced technology 37 

3 two types of advanced technology 6 

4 three types of advanced technology 2 

Water 

salinity 

1              Salinity ≤ 3840 mg/l 16 

2 3840  ≤ Salinity ≤ 7040 mg/l 13 

3              Salinity > 7040 mg/l 16 
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Table 3. Farm specific efficiency scores using DEA 

 

 

Farm 
*

CCRθ  
*

BCCθ  SE  

K

k k1

*   Status 

1 0.22 0.54 0.41 0.08 incr. 
2 0.49 0.61 0.81 0.52 incr. 
3 0.25 0.67 0.37 0.05 incr. 
4 0.34 0.65 0.53 0.24 incr. 
5 0.31 1.00 0.31 0.02 incr. 
6 0.55 0.67 0.82 0.55 incr. 
7 0.36 0.61 0.58 0.12 incr. 
8 0.25 0.89 0.28 0.06 incr. 
9 0.27 1.00 0.27 0.05 incr. 
10 0.36 0.70 0.51 0.29 incr. 
11 0.74 0.77 0.96 0.91 incr. 
12 0.68 0.70 0.97 0.61 incr. 
13 0.22 0.43 0.52 0.13 incr. 
14 0.39 0.53 0.74 0.26 incr. 
15 0.12 0.58 0.20 0.05 incr. 
16 0.33 1.00 0.33 0.07 incr. 
17 0.47 0.49 0.95 0.58 incr. 
18 0.29 0.59 0.49 0.21 incr. 
19 0.27 0.59 0.46 0.13 incr. 
20 0.37 0.75 0.50 0.12 incr. 
21 0.28 0.51 0.54 0.11 incr. 
22 0.27 0.66 0.41 0.07 incr. 
23 0.76 1.00 0.76 0.43 incr. 
24 0.36 0.40 0.88 0.47 incr. 
25 0.25 0.45 0.55 0.14 incr. 
26 0.28 1.00 0.28 0.07 incr. 
27 0.45 0.55 0.81 0.39 incr. 
28 0.41 0.97 0.42 0.18 incr. 
29 0.20 0.66 0.30 0.11 incr. 
30 1.00 1.00 1.00 1.00 const. 
31 0.34 0.84 0.40 0.19 incr. 
32 0.59 0.84 0.71 0.19 incr. 
33 0.35 0.83 0.42 0.09 incr. 
34 0.64 0.83 0.77 0.32 incr. 
35 0.28 0.81 0.34 0.14 incr. 
36 0.19 1.00 0.19 0.02 incr. 
37 0.37 0.55 0.67 0.21 incr. 
38 0.32 1.00 0.32 0.04 incr. 
39 0.25 0.92 0.27 0.03 incr. 
40 0.23 0.92 0.25 0.13 incr. 
41 0.47 0.59 0.80 0.50 incr. 
42 1.00 1.00 1.00 1.00 const. 
43 0.73 0.95 0.77 0.27 incr. 
44 0.48 0.67 0.72 0.39 incr. 
45 0.97 0.98 0.98 0.91 incr. 

Average 0.42 0.75 0.57   
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Table 4. Frequency distributions of efficiency scores for DEA models 

Efficiency scores 
*

CCRθ  
*

BCCθ  SE 

≤0.40 29 1 14 
0.40-0.50 6 3 7 

0.50-0.60 2 9 6 

0.60-0.70 2 10 1 

0.70-0.80 3 2 7 

0.80-0.90 0 6 4 

0.90-1.00 3 14 6 

Average efficiency 0.42 0.75 0.57 

 

Table 5. Average efficiency results by Governorate for DEA models 

 

 

 

 

 

Table 6. Characteristics of farms with respect to returns to scale 

 Number 

of farms 

Mean farm 

size ha) 

Mean 

revenue $) 

Sub-optimal 43 2.30 5,402 

Optimal 2 16.85 54,867 

Super Optimal na na na 

 

Table 7. Input slacks and farms using excess inputs 

Input 
Number 

of farms 

Mean 

slack 

Mean input 

use 

Excess input 

use %) 

Cropped area ha) 12 0.60 8.10 7.4 

Labour hours/year) 7 1,249 5,869 21.3 

Electricity consumption $/year) 12 3,244 15,251 27.4 

 

Table 8. Outputs of the OLS regression analysis Banker & Natarajan, 2008)) 

Coefficients Value Std Error t value p-value  

Intercept  -0.2200 0.2654 -0.8290 0.4121  

Education level 0.0582 0.0368 1.5825 0.1216  

Farm size -0.1198 0.0649 -1.8462 0.0725 <10% 

Water salinity -0.0793 0.0562 -1.4108 0.1662  

Farmer’s age 0.0380 0.0717 0.5307 0.5986  

Irrigation technology 0.0410 0.0527 0.7784 0.4410  

R square 0.1564     

R-square adjusted 0.0482     

Overall significance 0.2297     

Governorate 
*

CCRθ  
*

BCCθ  SE 
# Efficient 

farms CRS VRS 

Barka 0.369 0.690 0.552 0 2 
Musanaa 0.394 0.717 0.566 1 4 

Suwaiq 0.409 0.863 0.485 0 1 

Shinas 0.535 0.844 0.641 1 2 
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Table 9. Outputs of the OLS regression analysis Integrated stochastic model) 

Coefficients Value Std Error t p-value  

Intercept 5.2835 0.7150 7.3900 0.0000  

Cropped area x1)  1.2809 0.0792 16.1710 0.0000 <1% 

Labour x2) 0.0835 0.0645 1.2950 0.2035  

Electricity consumption x3)  0.3066 0.0889 3.4480 0.0015 <1% 

Farm size z1) 0.0320 0.0968 0.3310 0.7427  

Water salinity z2) -0.1444 0.0760 -1.9000 0.0655 <10% 

Irrigation technology z3) -0.1359 0.0725 -1.8750 0.0689 <10% 

Education level z4) 0.0165 0.0493 0.3340 0.7401  

Farmer’s age z5) -0.0387 0.0926 -0.4180 0.6786  

R-square 0.9387     

R-square adjusted 0.9250     

Overall significance 1.6710
-19

     

 


