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Abstract— The focus of this article is fault-diagnosis of 

complex mechanical parts through the process of their modal 

information using a multi-layer perceptron (MLP), a type of 

artificial neural networks (ANNs). The major contribution of 

this work is to formulate the problem of fault diagnosis of 

complex mechanical parts based on their modal information so 

as to be solved with use of ANNs. This method consists of three 

major steps: (1) Extracting natural frequencies of the part with 

or without faults. (2) Creating the “fault signatures” by 

deducting the natural frequencies of some faulty specimens 

from the ones of the faultless part. (3) Constructing and 

training a mathematical model in the form of an ANN, with 

information obtained in previous steps, to locate (and even 

further characterize) the fault. The presented method was 

successfully adopted to estimate the location of an under-

surface mechanical fault on an automobile cylinder block and 

is shown to have the potential to solve more sophisticated fault 

diagnosis problems. 

Index Term—  Vibrations; Fault Diagnosis; Natural 

Frequencies; Artificial Neural Networks; Cylinder Block 

1. INTRODUCTION  

Fault diagnosis, as a key concept in different areas 

technology [1-6], may answer a number of the following 

three critical questions: (i) is there any faults? i.e. fault 

detection, (ii) where is (are) the fault(s)? i.e. fault isolation, 

(iii) how is the fault? (e.g. in terms of size and shape) i.e. 

fault identification [7, 8].  

In some fault diagnosis methods, the 

response/information of a healthy system is evident; for 

instance, a metal part with no holes allows an ultrasonic 

wave to pass at a certain speed, as an evident response of a 

healthy system. In these so called ‘signal-based’ methods, 

only the response/information of the faulty system is utilised 

for fault diagnosis[7, 9]. In other fault diagnosis methods, a 

model or some behavioural information of the healthy 

system should be used for fault diagnosis. Such methods are 

called ‘model-based’, e.g. vibration-based fault diagnosis of 

mechanical structures, which need some information about 

the healthy system for fault diagnosis [10, 11]. 

Fault diagnosis is currently employed and/or explored 

for different systems such as chemical processes [12], 

electric motors [13] and mechanical structures [14]. Both 

signal-based and model-based techniques are used for fault 

diagnosis of mechanical parts/ structures, also known as 

structural damage detection. At the moment, signal-based 

methods such as radiography, ultrasonic, use of magnetic 

and thermal fields, CT scanning and eddy-current 

techniques are extensively employed in structural damage 

detection [9, 15, 16]. Inasmuch as all these techniques 

should be used in the locality of the fault [15], local damage 

detection is almost an equivalent of signal-based fault 

diagnosis [17]. On the contrary, model-based vibrational 

fault diagnosis techniques use the modal/dynamic properties 

of the 'whole' system; therefore, these methods are 

considered global. In other words, vibration-based methods 

do not depend on the data gathered from the fault locality. 

As a result, terms 'global' and 'model-based' are 

exchangeably used in the literature of structural damage 

detection [11]. 

Ideally, vibration-based methods can provide 

information on damage existence (fault detection), location 

(fault isolation) and size for a mechanical structure (fault 

identification) [18]. The reliability of vibration-based 

approach convinced NASA, in the late 1980s, to employ 

this approach to inspect its shuttle instead of prevalent 

signal-based methods [19]. This approach was, and is still 

mostly, seen as fault diagnosis on the basis of 

dynamic/modal properties of mechanical structures [9, 18, 
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20-23]. Natural frequencies, mode shapes and damping 

ratios are dynamic/modal properties widely used for this 

purpose [18]. Obtaining meaningful fault diagnosis 

information out of these modal properties is a major task in 

vibration-based fault diagnosis approaches.  

Some research disappointingly concluded that only 

higher frequency modes (e.g. with natural frequencies over 

30 kHz) are sufficiently sensitive to local defects [15]; 

while, prevalent acceleration sensors work at frequencies up 

to 10 kHz which can investigate modes with below 5 kHz 

natural frequencies [24]. That is, expensive vibration 

sensors with demanding operations may be needed to obtain 

meaningful vibrational information for fault diagnosis. This 

disappointing conclusion faded the initial hopes to extensive 

use of vibration-based methods in quality control of 

manufactured metal parts [15]. This research re-formulates 

vibration-based fault diagnosis problem so as to employ 

artificial intelligence to extract meaningful results out of 

low frequency vibrational modal information of a complex 

mechanical part. This work is inspired by recent sparse 

applications of artificial intelligence (AI) techniques to 

process vibrational information for fault isolation purposes 

[10, 11, 18, 25] (the employed technique is essentially 

different from feature classification e.g. [26]).  The 

proposed method has been successfully adopted and tested 

for isolation of a fault on an automobile cylinder block, a 

structure with a complex geometry. 

2. PROPOSED METHOD AND ITS DEVEOPMENT STEPS 

The developed fault diagnosis algorithm receives natural 

frequencies (extendible to other modal information) of a 

complex mechanical structure (an automobile cylinder head, 

in this research), belonging to low frequency (<5kHz) 

modes, and provide its fault information (fault location, in 

this research).  

Three following steps should be taken to develop the 

proposed method: 

(1) Modal analysis of the part without or with faults to 

find the natural frequencies associated with each 

healthy or faulty specimen. Section 4 details this step 

for the case study of this paper.  

(2) Pre-process of information collected at Step 1 to 

produce “fault signatures”. This stage, for the 

automobile cylinder block, is presented in section 5. 

(3) Creating a mathematical model in the form of a 

multilayer perceptron and training the data obtained at 

Step 2 to this model. The inputs to the model are the 

elements of the fault signature vector, and the output 

is (are) the location (and potentially other 

characteristics) of the fault (s). This step is presented 

in section 6. 

 

3.  CASE STUDY 

The case study is a cylinder block of an automobile 

engine made by SAIPA, an Iranian car manufacturer, 

depicted in Fig.1. High level of thermomechanical stress on 

the top surface of the cylinder block during operation of the 

engine makes this component very sensitive to the existence 

of any mechanical faults. 

The part, assumingly, may have one fault happening at 

different spots on a line, depicted in Fig. 2. The fault is a 

spherical void with the diameter of 1cm, situated 2.5 cm 

underneath the top surface, a common size and depth for 

casting faults [27]. A point highlighted in red (2.5 cm far 

from the edge) in Fig.2 is considered as the origin; the 

distance of fault centre to the origin is assumed as the fault 

location. For development and validation of the proposed 

method on the case study, modal information of the healthy 

cylinder block and 20 faulty specimens, with fault locations 

depicted in Fig. 2, one per specimen, was employed. 

Location of the closest fault to the origin is considered as 

fault location 1, and others as fault locations 2, 3, … , 20 as 

they are located further form the origin.  

 
Fig. 1. A 3D geometrical model of the cylinder block 
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Fig. 2. Fault locations on the top surface of the cylinder block. The red point is the origin

4.  STEP1- MODAL ANAlysis. 

Due to experimentation limits, a finite element model 

(FEM) of the cylinder block was first developed and 

experimentally validated. Then, a fault was added to the 

validated FEM, at locations depicted in Fig.2, one at a time. 

Natural frequencies of faulty specimens were calculated 

through numerical simulation using the validated FEM. 

 
Fig. 3. Experimental Modal Analysis, the cylinder block is hanged 

upside down. 

The FEM of the cylinder-block is made up of 2002793 

nodes and 1179381 irregular Tetrahedral element, 

constructed in ANSYS 14.0 software package. For model 

validation purposes, a standard experimental modal analysis 

was performed on the case study as shown in Fig.3.  

In experimental modal analysis, the acceleration of a 

point on the structure (indicated in Fig.3 within a red 

ellipse) was measured and recorded with a A/120/V DJB 

single-axis integrated-electronics piezoelectric 

accelerometer; while, 8202 B&K impact hammer hit 21 

different points on the structure on by one. A B&K 3560 

analyzer was employed to extract modal properties of the 

case study. 

 Natural frequencies resulting from the FEM and 

experimental modal analysis, presented in Table 1, clearly 

demonstrate the accuracy of the FEM, where 

experimentalnatural freq-FEM natural freq
difference% 100.

experimental natural freq
 

5. Step 2- Pre-process of Vibrational Data 

Modal analysis of the healthy specimen, as detailed in 

section 4, resulted in an array of its first 24 vibrational 

modes with natural frequencies below 5 kHz. These 24 

 
 

Table I 

Natural frequencies resulting from experimental and FEM modal analysis. 

Mode No. 
FEM Natural 

Frequency (Hz) 

Experimental Natural  

Frequency (Hz) 
Difference% 

1 1234.4 1239.7 0.4 

2 1660.3 1653.6 0.4 

3 2364.6 2375.9 0.5 

4 2705 2698.4 0.2 

5 3068.2 3071.4 0.1 
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natural frequencies are presented as ωi. i indicates 

vibrational mode, an integer in the range of [1 24]. Faulty 

specimens were simulated using the validated FEM and 

went through numerical modal analysis, leading to 24 below 

5 kHz natural frequencies of kωi, where k refers to the fault 

location. Thus, k is an integer in the range of [1 20]. It 

should be noted that the sole reason for use of FEM is 

experimentation limits. In the case of availability of faulty 

specimens, this method can be conducted using 

experimental modal analysis instead. 

After finding natural frequencies of healthy and faulty 

specimens, all the natural frequencies of faulty specimens 

were deducted from the natural frequencies of the healthy 

part. The result is an array of 24 numbers for each fault 

location. This array is called the ‘signature of fault location’ 

or in short ‘fault signature’, kM, for kth fault location. For 

mode i and fault location of k: 

k k .  i i iM
                                                                  (1) 

In total, 2024=480 samples of data are the outcome of 

this step. Table 2 presents the first ten natural frequencies 

and the first ten elements of the fault signature for the first 

fault locations, the closest to the origin in Fig.2. 

6.  STEP 3- MATHEMATICAL MODELLING 

At this step, a mathematical model was created, and its 

parameters were identified to map each fault signature to its 

releavnt location. A multi-layer-perceptron (MLP), as a type 

of artificial neural networks (ANNs), with a single hidden 

layer owning only sigmoid activation functions, (2), was 

opted as the mathematical model due to the following three 

reasons: (i) the model’s mathematical form is unknown; 

therefore, a universal approximator should be used as the 

model. MLPs  with a single hidden layer owning only 

sigmoid activation functions are universal approximators 

with a proven modelling capability [28]. (ii) MLPs, have 

been widely used to develop mathematical models for 

different purposes such as predictive modelling [29-31] and 

control [32-34]. (iii) Merit of MLPs in modelling with use 

of small number of data samples has been shown [35]. The 

inputs to the model, (2), are the elements of the fault 

signature, kMi, and model’s output is the estimated fault 

location, 
k ŷ : 

k k

1 1

ˆ .
 

 
   

 
 T W M b

h s

j ij i j

j i

y f c                                (2) 

where s is the number of model inputs or the size of fault 

signature, 24, ^ is used for the values estimated by the 

model. Eq.(3) demonstrates the utilised sigmoid function or 

f: 

2
( ) 1

1 exp( 2 )
 

 
f x

x
.                                                      (3) 

Research has shown that (3), also known as hyperbolic 

tangent function, outperforms  many other well-known 

activation functions such as uni-polar and bi-polar sigmoid, 

conic section and radial basis function (RBF) in terms of 

proving the MLP with a higher recognition accuracy [36]. 

Therefore, (3) can be used as an  activation function in most 

of MLP applications as an appropriate choice to obtain high 

accuracy [36]. 

 

Table II 

First 10 natural frequencies and first 10 elements of the signature for the first fault location 

Mode 
Natural Freq. of 

Healthy Part (Hz) 

Natural Freq. of 

Faulty Part (Hz) 

Fault Signature 

(first 10 elements) 

1 1234.4 1223.9 10.5 

2 1660.3 1648.7 11.6 

3 2364.6 2347.5 17.1 

4 2705.0 2685.0 20 

5 3068.3 3041.5 26.8 

6 3579.5 3556.5 23 

7 3655.7 3627.4 28.3 

8 3736.2 3692.3 43.9 

9 3749.3 3707.5 41.8 

10 3787.4 3733.4 54.0 
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h, the number of neurons in the hidden layer, has been 

suggested to be calculated according to (4) in the literature, 

based on Kolmogorov’s theorem [33, 37]:  

h=2s+1.                                                                               (4)                                                         

That is, h= 49. Hence, only unknown 

matrices/vectors/scalars are W, T, b and c. The elements of  

W and T are known as the weights of the first and the 

second layers of the MLP; b and c are called biases.  

Aforementioned unknown parameters of the MLP were 

identified using the data presented in section 5. Parameter 

identification of an MLP consists of the following 

procedures: (i) initialisation and training, (ii) validation and 

(iii) test. Each needs a data series of its own. In this 

research, 14, 4 and 2 randomly chosen fault locations and 

their relevant fault signatures were used for 

initialisation/training, validation and test, respectively. 

These data are known as the training, the validation and the 

test data. The key idea of parameter identification is to 

decrease the error: 

2

over designated data

ˆ( )



 k k
y y

E
number of data samples

.                                           (5) 

The error is named after the data set used for its 

calculation: training, validation or test. As this error uses the 

whole data set, any method using this error is a “batch” 

method.  

At the beginning of parameter identification, initial 

values of unknown model parameters were estimated using 

Nguyen-Widrow algorithm [38], which is briefly presented 

in Appendix 1. Initialisation may need to be repeated as 

detailed in the pseudocode. Then, Levenberg-Marquardt 

error back propagation, introduced in Appendix 2, was 

employed to further tune unknown parameters of the model 

using the training data. The following pseudocode presents a 

summary of iterative parameter identification algorithm 

used in this research: 

 Development of MLP structure based on (2) and (3) 

 10 Estimation of initial values of unknown parameters 

with Nguyen-Widrow algorithm 

 For i=1:100 

o 20 Calculation of the training error (TRE) with use 

of (5) and the training data 

o 30 Tuning the values, calculated at the previous 

step, using batch Levenberg-Marquardt error 

back-propagation method and TRE 

o 40 Calculation of the validation error (VE) with use 

of (5) and the validation data 

o 50 If  VE(i)>VE(i-1) go to 20  

 60 Calculation of the test error (TSE) based on (5) 

with the test data 

 If TSE is unacceptable go to 10  

 End 

In the For loop of the pseudocode, the training error 

often continues to decrease while the validation error 

increases; this phenomenon is called overfitting which leads 

to the lack of generality of the model [39]. In this research, 

increase of the validation error, VE, triggers to stop the 

algorithm to prevent overfitting. 

7. RESULTS AND DISCUSSION 

The accuracy of the developed fault isolation model was 

assessed with estimating two randomly selected fault 

locations, where none have been utilised neither in 

parameter identification (lines 10, 20 and 30 of the 

pseudocode) nor in validation of model (2) (lines 40 and 50 

of the pseudocode) . The aforementioned two faults are 

located 7 cm and 14 cm away the origin, and their estimated 

locations by the model are 8.5 cm and 13.93 cm, 

respectively. Such satisfactory test results mean that the 

model is cross-validated in the operating area that its 

training, validation and test data have been gathered from. 

 As a major advantage of this approach, the employed 

modal information was collected at frequencies below 5 

kHz, capturable by commercial sensors. That is, easy to 

collect vibrational information can be effectively used for 

fault isolation in complex automobile parts.  

 Although, the method was only adopted to isolate a 

fault on a line, the proposed methodology can be manifestly 

used to find two or three dimensions of a fault, providing 

that the results of adequate number of experiments or 

trustworthy numerical simulations are available. The 

number of required experiments/simulations can be 

reasonably considered related to the number of parameters 

(including both scalars and vector/matrix elements) of the 

model, Ψ. In model (2), T and b have h elements each, and 

W is of s×h elements. Therefore, the model has                       

Ψ =(s+2)h+1 parameters. 

  So as to estimate a fault location with d dimensions, in 

which d is the dimension of fault location (2 or 3), model 

(2) of section 6 would be adapted to have d outputs. Based 

on Kolmogorov theorem [40],  [33, 41] propose that the 

number of neurons in the hidden layer (h) are only 

contingent on the number of inputs as offered by (4). 

Therefore, h is identical for (2) and the models to estimate d 

dimensions of the fault location; hence, the size of W and b 

would not alter. However, the size of T would increase to 

d×h, and c becomes a vector with the size of d. Hence, the 

number of parameter of an MLP model to estimate d 

dimensions of a fault location is Ψ =(s+d+1)h+d.  

Considering (4): 

Ψ(d,s)=(s+d+1)(2s+1)+d.                                                  (6) 

For instance, with availability fault signatures with 24 

elements or s=24, according to (6), the number of 
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parameters (or Ψ ) of an MLP to estimate a fault location 

with one, two or three dimensions would be 1226, 1276 and 

1326, respectively. The discrepancy is not substantial. Thus, 

the number of experiments/ numerical simulations required 

to develop a mathematical model to isolate faults in a two or 

three dimensional space would be only slightly greater than 

the number of experiments/ numerical simulations required 

to do the same task in a one dimensional space. Size (e.g. 

equivalent diameter) and shape factor may be considered as 

additional outputs too. In this case, d would equal 5. For 

s=24 and d=5, the number of model parameters, Ψ , would 

be 1426.  

8. CONCLUSION  

This article presents a new fault-diagnosis approach, 

suitable for mechanical components and structures with 

complex geometry, with use of easily measurable natural 

frequencies and an MLP mathematical model. The highlight 

of this work is to formulate the well-known problem of 

vibration-based structural health inspection in a way to be 

tackled by artificial intelligence methods. The proposed 

method was shown to be highly accurate to locate an under-

surface fault in an automobile cylinder block. In order to 

develop the fault isolation algorithm for the aforementioned 

part, first, natural frequencies of a specimen with a fault 

were (numerically) obtained for a number of fault locations 

and deducted from the natural frequencies of the healthy 

part. The resultant, for each fault location, was named 

‘signature of the fault location’ or ‘fault signature’. 

Afterwards, an MLP was developed and identified using 14 

and 4 different fault signatures and their relevant locations 

for training and validation, respectively. The developed 

model precisely estimates the location of fault in two faulty 

specimens in which their information were used neither in 

training nor in validation. This research evidently shows that 

the vibrational modal information, at low frequencies 

(below 5kHz for the investigated case study), can be 

sufficient for fault diagnosis of complicated mechanical 

parts, providing that this information is appropriately 

processed using effective data analysis algorithms.  
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APPENDIX A1. A BRIEF INTRODUCTION TO NGUYEN-

WIDROW PARAMETER INITIALISATION ALGORITHM  

Fig.A.1 depicts the sigmoid activation function of (3). 

This function is almost linear within an interval; the slope of 

the functions decreases towards zero, as it goes further than 

this interval. 

Practically, if the input to a sigmoid activation function 

is located outside the range relevant to the linear interval, 

the function is of trivial effect on the model output, and 

accordingly, on the error and parameter identification 

algorithm. Such an event decelerates MLP parameter 

identification. Nguyen-Widrow algorithm estimates initial 

values of the model parameters, so that the outputs of the 

activation functions (for the training data) are situated 

within their linear intervals [42, 43].  
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Fig. A.1. The sigmoid activation function of (3) and its linear interval 

As a disadvantage, all derivative-based optimisation 

algorithms, e.g. Levenberg-Marquardt used in this research 

to tune the MLP parameters, may be caught in a local 

minimum of error. That is, the training process leads to an 

inaccurate MLP with a considerable estimation error. With 

restart of training from the identical initial values of 

parameters, the model is  again caught at the same trap. 

Therefore, the initialisation algorithm should produce 

different initial values for the MLP parameters in every run. 

To do so, this algorithms includes random functions [44]. 

APPENDIX A2. LEVENBERG-MARQUARDT METHOD  

The error or E of (5) can be presented as E(θ), where θ is a 

vector of entire MLP parameters. Tuning of θ elements 

(from their initial values) to minimise E(θ) for the training 

data. An approach to tackle this optimisation problem is to 

approximate the error function with a second order Taylor 

series: 
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This approximation is aimed to determine Δθ so as to 

(almost) assure that the error decreases. The following is the 

derivative of the error respect to θ : 
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where np is the number of parameters. (A.2) is a solution to 

this optimisation, known as Newton direction [45]: 
1 .  θ Η g                                                                       (A.2) 

Nevertheless, (A.2) is of use only in the case of inevitability 

of H . Levenberg and Marquardt [45] suggested an 

alternative to address this shortcoming(A.2): 
1( ) .     θ H I g                                                           (A.3) 

where I is the unit matrix with the size of np , and λ is the 

minimum number that can make H+λI invertible; linear 

search may be used to determine η.  Details of algorithms to 

determine η and λ are available in[34, 45]. Prior to finding 

the values of H and g elements, E and its derivatives need to 

be analytically presented as functions of θ. Development of 

such a presentation is known as error back-propagation. 

 

 


