Abstract
Spinel-related Mg1+2xSbxFe2-3xO 4 samples (x = 0.0, 0.05, 0.10, 0.15, 0.20, and 0.30) prepared using the conventional double sintering technique were investigated using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra favor a cationic distribution of the form (Mg δFe1-δ)A[Mg 1+2x-δSbxFe1+δ-3x] BO4 among the tetrahedral-A and octahedral-B sites of the spinel structure. The cation distribution parameter (δ) was found to vary with the Sb5+ concentration (x). The Mössbauer hyperfine magnetic fields at both sites and the Curie temperatures of the ferrites decrease as x increases. This was attributed to gradual weakening in the magnetic exchange interaction as more Fe3+ ions are substituted by diamagnetic Sb5+ and Mg2+ ones. The sample with x = 0.30 exhibits short range magnetic order due to cationic clustering and/or superparamagnetism. The magnetization of all samples was found to be temperature-dependent implying that δ depends on temperature in addition to x. At low temperatures the substituted ferrites (x ≠ 0.0) unexpectedly exhibit higher magnetization values relative to that of the pure ferrite MgFe2O4. This behavior, while at variance with the Néel's model for ferrimagnetism, is explicable in terms of the spin canting mechanism proposed in the Yafet-Kittel model.
Original language | English |
---|---|
Pages (from-to) | 97-103 |
Number of pages | 7 |
Journal | Materials Chemistry and Physics |
Volume | 140 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jun 15 2013 |
Keywords
- Crystal structure
- Magnetic properties
- Mössbauer spectroscopy
- Oxides
- Powder diffraction
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics