Abstract
The theme of this article is to scrutinize the entropy analysis for Darcy-Forchheimer flow of hybrid nanoliquid towards a stretched curved surface. Manganese and nickel ((Formula presented.) and (Formula presented.)) zinc ferrites are taken as nanoparticles. Here engine oil ((Formula presented.)) is used as base liquid. Dissipation and radiation effects in energy equation are incorporated. The basic modeling of entropy analysis is developed through second law of thermodynamics. The governing nonlinear partial system (PDEs) of the flow are converted to ordinary one (ODEs) through utilizing suitable variable. The resultant system is consequently solved through one of numerical method (ND-solve method). Graphical illustrations of velocity field, thermal field and entropy rate versus dimensionless variables for both manganese and nickel zinc ferrites/engine oil nanoparticles are discussed. Computational results of Nusselt number and drag force for both (Formula presented.) and (Formula presented.) nanoparticles against flow parameters are studied in tabulated form. A reverse trend holds for velocity through curvature and porosity variables. Higher Forchheimer number diminishes the velocity profile. Larger approximation of radiation has similar effect on thermal field and entropy rate. Higher volume fraction enhances the entropy rate and velocity profile. An intensification in porosity variables rises entropy rate. An increment in drag force is noticed for volume fraction. Higher curvature variable improves the heat transfer rate.
Original language | English |
---|---|
Article number | e202100194 |
Journal | ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
Volume | 102 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2022 |
ASJC Scopus subject areas
- Computational Mechanics
- Applied Mathematics