Electron transfer at single CdSe/ZnS quantum dot/adsorbate interface

Abey Issac*, Shengye Jin, Tianquan Lian

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Electron transfer at quantum dot/molecule interface has become a subject of intense recent interest because of the application of quantum dots (QDs) in novel solar cells and because of its ability to generate multiple excitons with one absorbed photon. Ensemble averaged ultrafast spectroscopic studies show that photoinduced interfacial electron transfer (IFET) between CdS or CdSe QDs and Rhodamine B molecules exhibit multi-exponential kinetics. Fluctuation in emission intensity (blinking) and exciton lifetimes have also been observed on single QDs. To understand how the dynamic and static heterogeneity contribute to the interfacial electron transfer from and to QDs, we have studied these dynamics in single CdSe/ZnS quantum dots attached with Rhodamine B molecules. Our results showed that the fluorescence lifetime of individual QD-dye nanoassembly is shorter than that of QDs, suggesting the quenching of excitons by interfacial electron transfer. The rate of electron transfer was shown to increase with number of dyes per QD. We will discuss the static and dynamic distributions of ET rates at the single quantum dot/adsorbate interface.

Original languageEnglish
Title of host publicationAmerican Chemical Society - 235th National Meeting, Abstracts of Scientific Papers
Publication statusPublished - 2008
Externally publishedYes
Event235th National Meeting of the American Chemical Society, ACS 2008 - New Orleans, LA, United States
Duration: Apr 6 2008Apr 10 2008

Publication series

NameACS National Meeting Book of Abstracts
ISSN (Print)0065-7727


Other235th National Meeting of the American Chemical Society, ACS 2008
Country/TerritoryUnited States
CityNew Orleans, LA

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)


Dive into the research topics of 'Electron transfer at single CdSe/ZnS quantum dot/adsorbate interface'. Together they form a unique fingerprint.

Cite this