Chemical and nutritional quality changes of tomato during postharvest transportation and storage

Mai Al-Dairi, Pankaj B. Pathare*, Rashid Al-Yahyai

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)


Transportation over longer distances could accelerate the chemical changes of fresh produce. Moreover, fresh produce quality is also influenced by temperature conditions during storage. The present study aims to explore the postharvest quality chemical and nutritional changes in tomatoes as affected by transportation distance and storage conditions. Tomato fruit was transported from a local farm to three distances (100, 154, and 205 km) and delivered to the laboratory to undergo chemical and nutritional quality analysis. Tomatoes were stored at two storage temperature conditions at10°C (95 ± 1% relative humidity) and 22 °C (65 ± 5% relative humidity) for 12 days. To record all vibration data signals, a 3-Axis USB vibration/acceleration data logger was used during transportation. The changes in chemical properties of tomato including total soluble solids (TSS), titratable acidity (TA), sugar:acid ratio (TSS:TA), and pH were measured. Furthermore, nutritional changes (i.e., total lycopene and carotenoids) were determined. Vibration data results recorded 41% of acceleration occurrence in the range interval of 0.0099 -0.0116 m/s2 in the longest distance of road travel. Chemical quality indicators like total soluble solids and sugar/acid ratio were mostly affected (p < 0.05) by storage condition and duration but not (p > 0.05) by transportation distance. However, TA was significantly affected by all investigated factors and was lower (0.25%) in tomatoes transported from the farthest distance compared to medium and shortest distances (0.26%) stored at 22 °C. Lycopene and carotenoids were highly affected by all studied factors. The highest amount of lycopene and carotenoids was observed in tomato transported from a long distance and stored at 22 °C on day12 with 1.21 and 1.55 mg.100 g−1 FW, respectively. The temperature during storage and long-distance transportation is critical in reducing postharvest chemical and nutritional quality losses of tomatoes.

Original languageEnglish
Pages (from-to)401-408
Number of pages8
JournalJournal of the Saudi Society of Agricultural Sciences
Issue number6
Publication statusPublished - Sept 1 2021


  • Lycopene
  • Temperature
  • Titratable acidity
  • Total soluble solid
  • Vibration

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'Chemical and nutritional quality changes of tomato during postharvest transportation and storage'. Together they form a unique fingerprint.

Cite this