Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction

Iman Malekmohamadi, Mohammad Reza Bazargan-Lari, Reza Kerachian, Mohammad Reza Nikoo, Mahsa Fallahnia

نتاج البحث: المساهمة في مجلةArticleمراجعة النظراء

139 اقتباسات (Scopus)


Wave Height (WH) is one of the most important factors in design and operation of maritime projects. Different methods such as semi-empirical, numerical and soft computing-based approaches have been developed for WH forecasting. The soft computing-based methods have the ability to approximate nonlinear wind-wave and wave-wave interactions without a prior knowledge about them. In the present study, several soft computing-based models, namely Support Vector Machines (SVMs), Bayesian Networks (BNs), Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are used for mapping wind data to wave height. The data set used for training and testing the simulation models comprises the WH and wind data gathered by National Data Buoy Center (NDBC) in Lake Superior, USA. Several statistical indices are used to evaluate the efficacy of the aforementioned methods. The results show that the ANN, ANFIS and SVM can provide acceptable predictions for wave heights, while the BNs results are unreliable.

اللغة الأصليةEnglish
الصفحات (من إلى)487-497
عدد الصفحات11
دوريةOcean Engineering
مستوى الصوت38
رقم الإصدار2-3
المعرِّفات الرقمية للأشياء
حالة النشرPublished - فبراير 2011

ASJC Scopus subject areas

  • ???subjectarea.asjc.2300.2305???
  • ???subjectarea.asjc.2200.2212???


أدرس بدقة موضوعات البحث “Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا